原文链接:https://www.52ml.net/20287.html

这篇博文主要讲了深度学习在目标检测中的发展。

博文首先介绍了传统的目标检测算法过程:

传统的目标检测一般使用滑动窗口的框架,主要包括三个步骤:

  1. 利用不同尺寸的滑动窗口框住图中的某一部分作为候选区域;
  2. 提取候选区域相关的视觉特征。比如人脸检测常用的Harr特征;行人检测和普通目标检测常用的HOG特征等;
  3. 利用分类器进行识别,比如常用的SVM模型。

基于深度学习的目标检测分为两派:

  1. 基于区域提名的,如R-CNN、SPP-net、Fast R-CNN、Faster R-CNN、R-FCN;
  2. 端到端(End-to-End),无需区域提名的,如YOLO、SSD。

目前来说,基于区域提名的方法依然占据上风,但端到端的方法速度上优势明显,后续的发展拭目以待。

接下来是对相关研究的详细介绍。

1、首先介绍的是区域提名--选择性搜索,以及用深度学习做目标检测的早期工作--Overfeat。

选择性搜索:不断迭代合并候选区域,已被弃用。

OverFeat:  用CNN做分类、定位和检测的经典之作(马克一记)。

2、基于区域提名的方法:主要介绍R-CNN系列

R-CNN:之前的工作都是用滑动窗口的方式,速度很慢,R-CNN采用的是selective search。

它和OverFeat类似,但缺点是速度慢。

SPP-net:针对剪裁技术可能出现的问题,SPP不管是对整副图像还是裁剪后的图像,都提取

相同维度的特征,这样可以统一送至全连接层。

FAST R-CNN:主要解决2000个候选框带来的重复计算问题。

FASTER R-CNN:抛弃了selective search,引入了RPN网格。

R-FCN:将最后的全连接层换为了卷积层。

3、端到端(end-to-end):无需区域提名

YOLO:将448*448的图像分成S*S的网络,简化目标检测流程;

SSD:   YOLO的改进,分为两部分:图像分类的网络和多尺度特征映射网络。

目标检测还存在一些问题,比如小目标检测问题。

#Deep Learning回顾#之基于深度学习的目标检测(阅读小结)的更多相关文章

  1. 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN,Faster R-CNN

    基于深度学习的目标检测技术演进:R-CNN.Fast R-CNN,Faster R-CNN object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.obj ...

  2. 基于深度学习的目标检测(object detection)—— rcnn、fast-rcnn、faster-rcnn

    模型和方法: 在深度学习求解目标检测问题之前的主流 detection 方法是,DPM(Deformable parts models), 度量与评价: mAP:mean Average Precis ...

  3. 基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

    object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...

  4. (转)基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN

    object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别.object detection要解决的问题就是物体在哪里,是什么这整个流程的问题.然而,这个问题 ...

  5. 基于深度学习的目标检测算法:SSD——常见的目标检测算法

    from:https://blog.csdn.net/u013989576/article/details/73439202 问题引入: 目前,常见的目标检测算法,如Faster R-CNN,存在着速 ...

  6. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

    3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...

  7. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...

  8. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3

    3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 ...

  9. 基于深度学习的病毒检测技术无需沙箱环境,直接将样本文件转换为二维图片,进而应用改造后的卷积神经网络 Inception V4 进行训练和检测

    话题 3: 基于深度学习的二进制恶意样本检测 分享主题:全球正在经历一场由科技驱动的数字化转型,传统技术已经不能适应病毒数量飞速增长的发展态势.而基于沙箱的检测方案无法满足 APT 攻击的检测需求,也 ...

随机推荐

  1. CentOS7搭建hadoop2.6.4+HBase1.1.6

    环境: CentOS7 hadoop2.6.4两个节点:master.slave1 HBase1.1.6 过程: hadoop安装目录:/usr/hadoop-2.6.4 master节点,hadoo ...

  2. socket编程--socket模块介绍

    socket也称作'套接字,用于描述IP地址和端口,是一个通信的终点. socket起源于Unix,而Unix/Linux基本哲学之一就是"一切皆文件",对于文件用[打开][读写] ...

  3. extjs 兼容性问题解决方案

    首先明确一点,extjs是没有所谓的兼容性的问题的.那为什么总是出现不同浏览器兼容性的问题呢?而且很多人把这作为了extjs一个缺点. 解决方法,看看写的代码是不是多了  英文逗号 , 或 中文的逗号 ...

  4. 10月16日上午MySQL数据库基础操作(创建、删除)

    以前用的是鼠标在界面上手动创建,这样创建会比较麻烦,而且还会经常出问题.在其它电脑上要用的话还需要重复操作.所以要使用程序代码操作,能通过代码的就不用手动操作. 在数据库界面选择要用的数据库,双击打开 ...

  5. Nvidia Nsight + .NET

    https://devtalk.nvidia.com/default/topic/804306/nsight-4-5-can-t-debug-net-applications/ http://comm ...

  6. oracle安装常见问题

    版本信息:CentOS6.5 + oracle11G 1.监视器颜色错误: [oracle@bogon database]$ 正在启动 Oracle Universal Installer... 检查 ...

  7. Yii2 执行流程

    原文地址: http://www.cnblogs.com/cresuccess/p/4874330.html

  8. python内置函数每个执行一次

      open    #   with open('log','r') as f:    或者   r=open(filename,r+) with open ('1.txt','r',encoding ...

  9. java String 中 intern方法的概念

    1. 首先String不属于8种基本数据类型,String是一个对象. 因为对象的默认值是null,所以String的默认值也是null:但它又是一种特殊的对象,有其它对象没有的一些特性. 2. ne ...

  10. python中raw_input() 与 input()

    参考网址:http://www.cnblogs.com/way_testlife/archive/2011/03/29/1999283.html 在python中如何接收一个输入的字符串. 举个例子: ...