通过几道例题简单阐述一下DFS的相关题型


ZOJ2412-Farm Irrigation

  直观的DFS题型,稍加变化,记录好四个方向上的通路就能够做出来

  题目和接水管类似,问最少要灌溉几次,即求解最少有多少个连通子图。

  

 //和接水管游戏类似,将相应水管通路标记清晰即可
//Time:0Ms Memory:270K
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define MAX 55
#define OPPOSITE(x) ((x + 2) % 4) //x的相反位置
#define MAP(x,y) (map[x][y] - 'A') //水管序列
int row, col;
char map[MAX][MAX];
bool v[MAX][MAX];
int mov[][] = { {, }, {, }, {, -}, {-, } }; //东南西北
bool face[][] = { //face[i][j] : 在i方向上第j个水管是否有通路
{ ,,,,,,,,,, }, //东
{ ,,,,,,,,,, }, //南
{ ,,,,,,,,,, }, //西
{ ,,,,,,,,,, } //北
};
void dfs(int x,int y)
{
v[x][y] = true;
for (int i = ; i < ; i++)
{
int tx = x + mov[i][];
int ty = y + mov[i][];
if (face[i][MAP(x,y)] && tx >= && tx < row && ty >= && ty < col) //该水管相应对接方向有通路
{
if (!v[tx][ty] && face[OPPOSITE(i)][MAP(tx,ty)]) //对接水管相应方向有通路
dfs(tx, ty);
}
}
}
int main()
{
while (scanf("%d%d", &row, &col), row != - && col != -)
{
memset(v, false, sizeof(v));
for (int i = ; i < row; i++)
scanf("%s", map[i]);
int times = ;
for (int i = ; i < row; i++)
for (int j = ; j < col; j++)
{
if (!v[i][j]) {
times++;
dfs(i, j);
}
}
printf("%d\n", times);
}
return ;
}

ZOJ1008-Gnome Tetravex

  看起来不像个搜索题,初看可能会以为需要枚举之类的,但是题中方块的各状态需要记录,在匹配失败时需要回退,因此是一道DFS题型。

  大致的解题思路就是先枚举0行0列的方块,再依据此方块固定下一个方块,以此类推,出现不能匹配时回退。

  虽然规模最大只有5,但是总方块数25个在DFS中也不可小觑,如果用纯DFS来做,时间度最坏可以达到O((n^2)!),因此剪枝或其他优化是必须的(只要数据不够水),我在超时后看了很多博客的解题报告(想不到了= =),就该题数据而言最好的优化方法是去重,即将相同方块合在一起,以减少DFS的分支数,但是我总觉得这么做挺奇怪的。。。虽然在大数据下,此题去重很有效果(数字在0-9,因此方块重复概率 < 1/2500),但是此题拿小数据故意出多组重复方块,不得不让人怀疑其心不善...

  

  另外的剪枝方法,也有很多比较有效,但对此题没有太大帮助。

    例如:记录各方向上各数字的个数,在匹配时动态增删,如果已经固定的方块需要的对应数字的数量缺失,那么就可以直接回退,剪枝效果在少量随机数据情况下比较好。

    

 //去重就不会超时了,但这个优化实在是...让人感到很意外
//Time:2100ms Memory:272K
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std; #define MAX 28 int n, m;
int sq[MAX][]; //上右下左
int board[MAX]; //棋盘上对应位置的square
int v[MAX]; //记录同类sq未被使用的数量 bool dfs(int num)
{
if (num == n*n)
return true;
//找出可以充当第num个方块的i方块
for (int i = ; i < m; i++)
{
if (!v[i]) continue; //没有未固定方块
if (num % n && sq[i][] != sq[board[num - ]][]) continue; //非第一列+不匹配
if (num / n && sq[i][] != sq[board[num - n]][]) continue; //非第一行+不匹配 v[i]--;
board[num] = i;
if (dfs(num + )) return true;
else v[i] ++;
}
return false;
} int main()
{
int t = ;
while (scanf("%d", &n), n)
{
if (t) printf("\n"); memset(v, , sizeof(v));
memset(board, , sizeof(board));
m = ;
for (int i = ; i < n*n; i++)
{
int u, r, d, l;
scanf("%d%d%d%d", &u, &r, &d, &l);
//查重
bool flag = false;
for (int j = ; j < m; j++)
{
if (u == sq[j][] && r == sq[j][] && d == sq[j][] && l == sq[j][])
{
v[j]++;
flag = true;
break;
}
}
if (!flag) {
sq[m][] = u; sq[m][] = r; sq[m][] = d; sq[m][] = l;
v[m++] ++;
}
} if (dfs()) printf("Game %d: Possible\n", ++t);
else printf("Game %d: Impossible\n", ++t);
} return ;
}

ACM/ICPC 之 DFS范例(ZOJ2412-ZOJ1008)的更多相关文章

  1. ACM/ICPC 之 DFS+SPFA-贪心+最短路(POJ2679)

    //POJ2679 //DFS+SPFA+邻接表 //只能走每个点费用最小的边,相同则需保证距离最短 //求最小费用及最短距离 //Time:47Ms Memory:900K #include< ...

  2. ACM/ICPC 之 DFS求解欧拉通路路径(POJ2337)

    判断是欧拉通路后,DFS简单剪枝求解字典序最小的欧拉通路路径 //Time:16Ms Memory:228K #include<iostream> #include<cstring& ...

  3. ACM/ICPC 之 DFS求解欧拉回路+打表(POJ1392)

    本题可以通过全部n位二进制数作点,而后可按照某点A的末位数与某点B的首位数相等来建立A->B有向边,以此构图,改有向图则是一个有向欧拉回路,以下我利用DFS暴力求解该欧拉回路得到的字典序最小的路 ...

  4. ACM/ICPC 之 Floyd范例两道(POJ2570-POJ2263)

    两道以Floyd算法为解法的范例,第二题如果数据量较大,须采用其他解法 POJ2570-Fiber Network //经典的传递闭包问题,由于只有26个公司可以采用二进制存储 //Time:141M ...

  5. ACM/ICPC 之 Prim范例(ZOJ1586-POJ1789(ZOJ2158))

    两道Prim解法范例题型,简单的裸Prim,且两题相较以边为重心的Kruskal解法而言更适合以点为重心扩展的Prim解法. ZOJ1586-QS Network 题意:见Code 题解:直接的MST ...

  6. ACM/ICPC 之 Kruskal范例(ZOJ1203-POJ1861(ZOJ1542))

    两道最小生成树范例,Kruskal解法-以边为主体扩展最小生成树,需要利用并查集. ZOJ1203-Swordfish 题意:求n个给定平面坐标的城市中的一条平面距离上的最短路长(保留两位小数) 题解 ...

  7. ACM/ICPC 之 SPFA范例两道(POJ3268-POJ3259)

    两道以SPFA算法求解的最短路问题,比较水,第二题需要掌握如何判断负权值回路. POJ3268-Silver Cow Party //计算正逆最短路径之和的最大值 //Time:32Ms Memory ...

  8. ACM/ICPC 之 BFS范例(ZOJ2913-ZOJ1136(POJ1465))

    通过几道经典BFS例题阐述BFS思路 ZOJ2913-Bus Pass 题意:找一个center区域,使得center到所有公交线路最短,有等距的center则输出id最小的. 题解:经典的BFS,由 ...

  9. hduoj 4707 Pet 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4707 Pet Time Limit: 4000/2000 MS (Java/Others)    Memory ...

随机推荐

  1. 【转】Kafka实战-Flume到Kafka

    Kafka实战-Flume到Kafka Kafka   2015-07-03 08:46:24 发布 您的评价:       0.0   收藏     2收藏 1.概述 前面给大家介绍了整个Kafka ...

  2. PHP中spl_autoload_register()函数

    spl_autoload_register — 注册给定的函数作为 __autoload 的实现 官方地址:http://php.net/manual/zh/function.spl-autoload ...

  3. sql拼音简写函数

    USE [HotelDB]GO /****** Object: UserDefinedFunction [dbo].[fn_GetPy] Script Date: 2016/1/4 13:29:13 ...

  4. I’ve seen the world,lit it up as my stage now

    I've seen the world,lit it up as my stage now 阅尽繁华 点亮红尘做舞台 Channeling angels in,the new age now 粉末登场 ...

  5. 【PHP面向对象(OOP)编程入门教程】2.什么是类,什么是对象,类和对象这间的关系

    类的概念:类是具有相同属性和服务的一组对象的集合.它为属于该类的所有对象提供了统一的抽象描述,其内部包括属性和服务两个主要部分.在面向对象的编程语言中,类是一个独立的程序单位,它应该有一个类名并包括属 ...

  6. linux 脚本命令匹配并获取下一行数据

    三种方式: 匹配“Title”并打印出匹配行的下一行 grep  -A 1 'Title'  urfile awk '/Title/{getline a;print $0"\n"a ...

  7. Android SDK Manager 无法下载更新,或者更新速度超慢,或者待安装包列表不显示

    解决方法: 转自 http://www.cnblogs.com/tc310/archive/2012/12/21/2828450.html http://jingyan.baidu.com/artic ...

  8. JavaScript引用类型

    引用类型虽然看起来和类很相似,但是它们却是不同的概念,引用类型的值,也就是对象是引用类型的一个实例.在Js中引用类型主要有Object,Array,Date,正则,Function等. 数组Array ...

  9. ionic不同view跳转到同一个

    ionic不同view跳转到同一个 view并保留历史的路由设计 上代码:state 里面新加一个状态 .state("other", { url: "/other&qu ...

  10. canvas 中save和restore的用法

    在创建新的控件或修改现有的控件时,我们都会涉及到重写控件或View的onDraw方法. onDraw方法会传入一个Canvas对象,它是你用来绘制控件视觉界面的画布. 在onDraw方法里,我们经常会 ...