Sightseeing Cows
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9703   Accepted: 3299

Description

Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.

Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.

While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.

The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.

In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.

Help the cows find the maximum fun value per unit time that they can achieve.

Input

* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti

Output

* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.

Sample Input

5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2

Sample Output

6.00

Source


转载一段题解:

http://www.cnblogs.com/wally/p/3228171.html
题目的意思是:求一个环的{点权和}除以{边权和},使得那个环在所有环中{点权和}除以{边权和}最大。
令在一个环里,点权为v[i],对应的边权为e[i],
即要求:∑(i=,n)v[i]/∑(i=,n)e[i]最大的环(n为环的点数),
设题目答案为ans,
即对于所有的环都有 ∑(i=,n)(v[i])/∑(i=,n)(e[i])<=ans
变形得ans* ∑(i=,n)(e[i])>=∑(i=,n)(v[i])
再得 ∑(i=,n)(ans*e[i]-v[i]) >=
稍分析一下,就有:
当k<ans时,就存在至少一个环∑(i=,n)(k*e[i]-v[i])<,即有负权回路(边权为k*e[i]-v[i]);
当k>=ans时,就对于所有的环∑(i=,n)(k*e[i]-v[i])>=,即没有负权回路。
然后我们就可以使新的边权为k*e[i]-v[i],用spfa来判断付权回路,二分ans。

再一段

http://www.cnblogs.com/proverbs/archive/2013/01/09/2853741.html

01分数规划,简单构造,将点权转移到边权上~因为一个环上的点和边的数量是相等的~

设i,j之间初始边权为w[i][j],修改后的边权为g[i][j],则g[i][j]=w[i][j]*mid+val[i]

spfa判负环即可~

 

列式转换一下,所有的都满足

 ∑(i=1,n)(ans*e[i]-v[i]) >=0
如果有的不满足,就更改ans使他满足,用实数二分的方法 用spfa判负环,有负环就说明可以选出一个n的集合使上述条件不满足
因为不需要最短路所以把初始化所有点加进去d=0
还有一种很神的dfs写法,负环超级快;从每个点dfs-spfa看看有没有回到自己 bfs:
//
// main.cpp
// poj3621
//
// Created by Candy on 9/13/16.
// Copyright ? 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
const int N=,M=; int n,m,a,b;
double l,r,mid,f[N],c;
struct edge{
int v,ne;
double w;
}e[M];
int h[N],cnt=;
inline void ins(int u,int v,double w){
cnt++;
e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
} int inq[N],num[N];
double d[N];
bool spfanc(double p){
queue<int> q;
memset(num,,sizeof(num));
for(int i=;i<=n;i++) {d[i]=;inq[i]=;q.push(i);num[i]++;} while(!q.empty()){
int u=q.front();q.pop();inq[u]=;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v; double w=e[i].w*p-f[u];
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(!inq[v]){q.push(v);inq[v]=;if(++num[v]>n) return true;}
}
}
}
return false;
}
int main(int argc, const char * argv[]) {
while(cin>>n>>m){
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=n;i++) scanf("%lf",&f[i]);
for(int i=;i<=m;i++){scanf("%d%d%lf",&a,&b,&c);ins(a,b,c);} l=,r=;
while(r-l>1e-){
mid=(l+r)/;//printf("%.2f\n",mid);
if(spfanc(mid)) l=mid;
else r=mid;
}
printf("%.2f\n",mid);
}
return ;
}

dfs:

//
// main.cpp
// poj3621
//
// Created by Candy on 9/13/16.
// Copyright ? 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
const int N=,M=; int n,m,a,b;
double l,r,mid,f[N],c;
struct edge{
int v,ne;
double w;
}e[M];
int h[N],cnt=;
inline void ins(int u,int v,double w){
cnt++;
e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
} int vis[N],st;
double d[N];
inline bool dfs(int u,double p){
vis[u]=st;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v; double w=e[i].w*p-f[u];
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(vis[v]==vis[u]) return true;
else if(dfs(v,p)) return true;
}
}
vis[u]=;
return false;
}
bool nc(double p){
memset(vis,,sizeof(vis));
//memset(d,0,sizeof(d));
for(st=;st<=n;st++)
if(dfs(st,p)) return true; return false;
}
int main(int argc, const char * argv[]) {
while(cin>>n>>m){
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=n;i++) scanf("%lf",&f[i]);
for(int i=;i<=m;i++){scanf("%d%d%lf",&a,&b,&c);ins(a,b,c);} l=,r=;
while(r-l>1e-){
mid=(l+r)/;//printf("%.2f\n",mid);
if(nc(mid)) l=mid;
else r=mid;
}
printf("%.2f\n",mid);
}
return ;
}
 

POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]的更多相关文章

  1. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  2. bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 594  Solved: 360[Submit][Statu ...

  3. POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  4. [HNOI2009]最小圈 分数规划 spfa判负环

    [HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...

  5. [P1768]天路(分数规划+SPFA判负环)

    题目描述 “那是一条神奇的天路诶~,把第一个神犇送上天堂~”,XDM先生唱着这首“亲切”的歌曲,一道猥琐题目的灵感在脑中出现了. 和C_SUNSHINE大神商量后,这道猥琐的题目终于出现在本次试题上了 ...

  6. bzoj 1690: [Usaco2007 Dec]奶牛的旅行——分数规划+spfa判负环

    Description 作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天.旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇. 很幸运地,奶牛们找到了一张详细的城 ...

  7. bzoj1690:[Usaco2007 Dec]奶牛的旅行(分数规划+spfa判负环)

    PS:此题数组名皆引用:戳我 题目大意:有n个点m条有向边的图,边上有花费,点上有收益,点可以多次经过,但是收益不叠加,边也可以多次经过,但是费用叠加.求一个环使得收益和/花费和最大,输出这个比值. ...

  8. [HNOI2009]最小圈(分数规划+SPFA判负环)

    题解:求环长比环边个数的最小值,即求min{Σw[i]/|S|},其中i∈S.这题一眼二分,然后可以把边的个数进行转化,假设存在Σw[i]/|S|<=k,则Σw[i]-k|S|<=0,即Σ ...

  9. 2018.09.09 poj2949Word Rings(01分数规划+spfa判环)

    传送门 这题要先巧妙的转化一下. 对于每个字符串,我们把头尾的两个小字符串对应的点连边,边权是这个字符串的长度. 这样最多会出现26*26个点. 这个时候就只用求出边权和跟边数的最大比值了. 这个显然 ...

随机推荐

  1. CSS3简单动画

    css3的动画确实非常绚丽!浏览器兼容性很重要!. 分享两个小动画 <!doctype html> <html lang="en"> <head> ...

  2. Dynamics AX7 materials

    Dynamics AX community https://community.dynamics.com/ax Dynamics AX Wiki https://ax.help.dynamics.co ...

  3. ICSharpCode.SharpZipLib简单使用

    胡乱做了个小例子,记录下来,以便后面复习. using System; using System.Collections.Generic; using System.Linq; using Syste ...

  4. Android 开源框架Universal-Image-Loader完全解析(二)--- 图片缓存策略详解

    转载请注明本文出自xiaanming的博客(http://blog.csdn.net/xiaanming/article/details/26810303),请尊重他人的辛勤劳动成果,谢谢! 本篇文章 ...

  5. 我的第一节Android课

    我的第一节安卓课程,今天非比寻常的一天,我开始了我程序猿之路的第一节安卓课程,安卓课程只是我的一个兴趣班,我的本专业是java开发,因为喜欢做一个属于自己的一个手机APP,就选多个一样技能,毕竟十八般 ...

  6. iOS---检测系统通知开关状态

    if (iOS8) { //iOS8以上包含iOS8 if ([[UIApplication sharedApplication] currentUserNotificationSettings].t ...

  7. iOS中如何知道app版本已更新

    主要用于程序升级,开启程序后是否显示新特性两个方面. 1.苹果app版本 苹果规定,程序的版本只能升不能降.例如1.0->1.1可以,1.1->1.0就不可以,不允许上架. 2.app版本 ...

  8. Swift 初步了解

    Swift 初步了解 前言: 本篇博客会结合OC对Swift进行简单介绍. OC 用NSLog输出日志 NSLog(@"旭宝爱吃鱼"); Swift 用print输出日志 prin ...

  9. 关于激活Bentley软件详细步骤介绍(再补充一个)

    在安装完ContextCapture软件之后,大家怀着迫不及待的心情双击了运行快捷键.但是很遗憾的是,会产生下面的提示窗口: 也许大家并不在意,就觉得关掉这个窗口不就行了.然而,头疼的问题来了.这个窗 ...

  10. DOM样式操作

    CSS 到 DOM的抽象 通过操作 CSS 对应的 DOM对象来更新CSS样式 换肤操作 如何获取实际的样式(不仅有行内,更有页面和外联样式表中定义的样式) 样式表分为三类: 外联,页面,行内 内部样 ...