Sightseeing Cows
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 9703   Accepted: 3299

Description

Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.

Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.

While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.

The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.

In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.

Help the cows find the maximum fun value per unit time that they can achieve.

Input

* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti

Output

* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.

Sample Input

5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2

Sample Output

6.00

Source


转载一段题解:

http://www.cnblogs.com/wally/p/3228171.html
题目的意思是:求一个环的{点权和}除以{边权和},使得那个环在所有环中{点权和}除以{边权和}最大。
令在一个环里,点权为v[i],对应的边权为e[i],
即要求:∑(i=,n)v[i]/∑(i=,n)e[i]最大的环(n为环的点数),
设题目答案为ans,
即对于所有的环都有 ∑(i=,n)(v[i])/∑(i=,n)(e[i])<=ans
变形得ans* ∑(i=,n)(e[i])>=∑(i=,n)(v[i])
再得 ∑(i=,n)(ans*e[i]-v[i]) >=
稍分析一下,就有:
当k<ans时,就存在至少一个环∑(i=,n)(k*e[i]-v[i])<,即有负权回路(边权为k*e[i]-v[i]);
当k>=ans时,就对于所有的环∑(i=,n)(k*e[i]-v[i])>=,即没有负权回路。
然后我们就可以使新的边权为k*e[i]-v[i],用spfa来判断付权回路,二分ans。

再一段

http://www.cnblogs.com/proverbs/archive/2013/01/09/2853741.html

01分数规划,简单构造,将点权转移到边权上~因为一个环上的点和边的数量是相等的~

设i,j之间初始边权为w[i][j],修改后的边权为g[i][j],则g[i][j]=w[i][j]*mid+val[i]

spfa判负环即可~

 

列式转换一下,所有的都满足

 ∑(i=1,n)(ans*e[i]-v[i]) >=0
如果有的不满足,就更改ans使他满足,用实数二分的方法 用spfa判负环,有负环就说明可以选出一个n的集合使上述条件不满足
因为不需要最短路所以把初始化所有点加进去d=0
还有一种很神的dfs写法,负环超级快;从每个点dfs-spfa看看有没有回到自己 bfs:
//
// main.cpp
// poj3621
//
// Created by Candy on 9/13/16.
// Copyright ? 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
const int N=,M=; int n,m,a,b;
double l,r,mid,f[N],c;
struct edge{
int v,ne;
double w;
}e[M];
int h[N],cnt=;
inline void ins(int u,int v,double w){
cnt++;
e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
} int inq[N],num[N];
double d[N];
bool spfanc(double p){
queue<int> q;
memset(num,,sizeof(num));
for(int i=;i<=n;i++) {d[i]=;inq[i]=;q.push(i);num[i]++;} while(!q.empty()){
int u=q.front();q.pop();inq[u]=;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v; double w=e[i].w*p-f[u];
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(!inq[v]){q.push(v);inq[v]=;if(++num[v]>n) return true;}
}
}
}
return false;
}
int main(int argc, const char * argv[]) {
while(cin>>n>>m){
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=n;i++) scanf("%lf",&f[i]);
for(int i=;i<=m;i++){scanf("%d%d%lf",&a,&b,&c);ins(a,b,c);} l=,r=;
while(r-l>1e-){
mid=(l+r)/;//printf("%.2f\n",mid);
if(spfanc(mid)) l=mid;
else r=mid;
}
printf("%.2f\n",mid);
}
return ;
}

dfs:

//
// main.cpp
// poj3621
//
// Created by Candy on 9/13/16.
// Copyright ? 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
const int N=,M=; int n,m,a,b;
double l,r,mid,f[N],c;
struct edge{
int v,ne;
double w;
}e[M];
int h[N],cnt=;
inline void ins(int u,int v,double w){
cnt++;
e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
} int vis[N],st;
double d[N];
inline bool dfs(int u,double p){
vis[u]=st;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v; double w=e[i].w*p-f[u];
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(vis[v]==vis[u]) return true;
else if(dfs(v,p)) return true;
}
}
vis[u]=;
return false;
}
bool nc(double p){
memset(vis,,sizeof(vis));
//memset(d,0,sizeof(d));
for(st=;st<=n;st++)
if(dfs(st,p)) return true; return false;
}
int main(int argc, const char * argv[]) {
while(cin>>n>>m){
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=n;i++) scanf("%lf",&f[i]);
for(int i=;i<=m;i++){scanf("%d%d%lf",&a,&b,&c);ins(a,b,c);} l=,r=;
while(r-l>1e-){
mid=(l+r)/;//printf("%.2f\n",mid);
if(nc(mid)) l=mid;
else r=mid;
}
printf("%.2f\n",mid);
}
return ;
}
 

POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]的更多相关文章

  1. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  2. bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 594  Solved: 360[Submit][Statu ...

  3. POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  4. [HNOI2009]最小圈 分数规划 spfa判负环

    [HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...

  5. [P1768]天路(分数规划+SPFA判负环)

    题目描述 “那是一条神奇的天路诶~,把第一个神犇送上天堂~”,XDM先生唱着这首“亲切”的歌曲,一道猥琐题目的灵感在脑中出现了. 和C_SUNSHINE大神商量后,这道猥琐的题目终于出现在本次试题上了 ...

  6. bzoj 1690: [Usaco2007 Dec]奶牛的旅行——分数规划+spfa判负环

    Description 作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天.旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇. 很幸运地,奶牛们找到了一张详细的城 ...

  7. bzoj1690:[Usaco2007 Dec]奶牛的旅行(分数规划+spfa判负环)

    PS:此题数组名皆引用:戳我 题目大意:有n个点m条有向边的图,边上有花费,点上有收益,点可以多次经过,但是收益不叠加,边也可以多次经过,但是费用叠加.求一个环使得收益和/花费和最大,输出这个比值. ...

  8. [HNOI2009]最小圈(分数规划+SPFA判负环)

    题解:求环长比环边个数的最小值,即求min{Σw[i]/|S|},其中i∈S.这题一眼二分,然后可以把边的个数进行转化,假设存在Σw[i]/|S|<=k,则Σw[i]-k|S|<=0,即Σ ...

  9. 2018.09.09 poj2949Word Rings(01分数规划+spfa判环)

    传送门 这题要先巧妙的转化一下. 对于每个字符串,我们把头尾的两个小字符串对应的点连边,边权是这个字符串的长度. 这样最多会出现26*26个点. 这个时候就只用求出边权和跟边数的最大比值了. 这个显然 ...

随机推荐

  1. js资源加载优化

    互联网应用或者访问量大的应用,对js的加载优化是不可少的.下面记录几种优化方法 CDN  + 浏览器缓存 CDN(content delivery network)内容分发网络, 最传统的优化方式.其 ...

  2. web基础

    1.认识webapp程序?     请求方式不同:基于事件触发------基于http协议下的http请求和http响应.点击百度一下-----发送了请求:不仅会携带问题,ip地址,主机号.请求是客户 ...

  3. npm 安装 ionic cordova

    针对npm安装 ionic 和 cordova 过程很慢,且有些安装文件被墙的问题,使用如下方式解决: 1)安装cnpm npm install -g cnpm 2)然后再使用cnpm 安装 ioni ...

  4. SharePoint 2013 同步FBA认证用户

    SharePoint 开启了基于FBA的身份认证,经常会遇到用户组用户的问题,当我加入一个AD账号,无法同时加入Form认证的用户,这时,只能手动添加,比较麻烦:所以,写了一个服务,用来每天晚上同步一 ...

  5. Ajax异步刷新地址栏url改变(利用Html5 history.pushState实现)

    早些时候在博客园参阅了不少资料,然后决定入驻博客园分享自己的开发心得,最近准备转方向筹备着辞职交接工作,所以有点忙碌,搁置了一个月才匆匆写下这么一篇随笔,希望能给大家带来一点帮助吧,资料和学识有限,如 ...

  6. Autodesk View and Data API练练手

    大家如果参加过我们的活动,你应该已经听过看过不少关于View and Data Web Service的例子里,如果还没有的话,请看看下面这几篇: http://www.cnblogs.com/jun ...

  7. iOS多线程中,队列和执行的排列组合结果分析

    本文是对以往学习的多线程中知识点的一个整理. 多线程中的队列有:串行队列,并发队列,全局队列,主队列. 执行的方法有:同步执行和异步执行.那么两两一组合会有哪些注意事项呢? 如果不是在董铂然博客园看到 ...

  8. Quartz2D复习(二) --- 手势解锁

    这次支付宝手机客户端升级,把手势解锁那个功能去掉了,引起很多人的抱怨,觉得少了手势解锁的保护,个人信息容易泄漏了... 那么手势解锁功能是怎么是实现的呢,这里使用Quart2D来简单模拟一下, 先看下 ...

  9. eclipse中使用javadoc生成文档

    1.Javadoc command:输入 [jdk路径]\javadoc.exe 2.Extra Javadoc options输入 -windowtitle '标题'-encoding UTF-8 ...

  10. 【代码笔记】iOS-点击cell时候的动画翻转

    一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> @interface RootViewController ...