POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 9703 | Accepted: 3299 |
Description
Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.
Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.
While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.
The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.
In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.
Help the cows find the maximum fun value per unit time that they can achieve.
Input
* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti
Output
* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.
Sample Input
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
Sample Output
6.00
Source
转载一段题解:
http://www.cnblogs.com/wally/p/3228171.html
题目的意思是:求一个环的{点权和}除以{边权和},使得那个环在所有环中{点权和}除以{边权和}最大。
令在一个环里,点权为v[i],对应的边权为e[i],
即要求:∑(i=,n)v[i]/∑(i=,n)e[i]最大的环(n为环的点数),
设题目答案为ans,
即对于所有的环都有 ∑(i=,n)(v[i])/∑(i=,n)(e[i])<=ans
变形得ans* ∑(i=,n)(e[i])>=∑(i=,n)(v[i])
再得 ∑(i=,n)(ans*e[i]-v[i]) >=
稍分析一下,就有:
当k<ans时,就存在至少一个环∑(i=,n)(k*e[i]-v[i])<,即有负权回路(边权为k*e[i]-v[i]);
当k>=ans时,就对于所有的环∑(i=,n)(k*e[i]-v[i])>=,即没有负权回路。
然后我们就可以使新的边权为k*e[i]-v[i],用spfa来判断付权回路,二分ans。
再一段
http://www.cnblogs.com/proverbs/archive/2013/01/09/2853741.html
01分数规划,简单构造,将点权转移到边权上~因为一个环上的点和边的数量是相等的~
设i,j之间初始边权为w[i][j],修改后的边权为g[i][j],则g[i][j]=w[i][j]*mid+val[i]
spfa判负环即可~
列式转换一下,所有的都满足
∑(i=1,n)(ans*e[i]-v[i]) >=0
如果有的不满足,就更改ans使他满足,用实数二分的方法 用spfa判负环,有负环就说明可以选出一个n的集合使上述条件不满足
因为不需要最短路所以把初始化所有点加进去d=0
还有一种很神的dfs写法,负环超级快;从每个点dfs-spfa看看有没有回到自己 bfs:
//
// main.cpp
// poj3621
//
// Created by Candy on 9/13/16.
// Copyright ? 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
const int N=,M=; int n,m,a,b;
double l,r,mid,f[N],c;
struct edge{
int v,ne;
double w;
}e[M];
int h[N],cnt=;
inline void ins(int u,int v,double w){
cnt++;
e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
} int inq[N],num[N];
double d[N];
bool spfanc(double p){
queue<int> q;
memset(num,,sizeof(num));
for(int i=;i<=n;i++) {d[i]=;inq[i]=;q.push(i);num[i]++;} while(!q.empty()){
int u=q.front();q.pop();inq[u]=;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v; double w=e[i].w*p-f[u];
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(!inq[v]){q.push(v);inq[v]=;if(++num[v]>n) return true;}
}
}
}
return false;
}
int main(int argc, const char * argv[]) {
while(cin>>n>>m){
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=n;i++) scanf("%lf",&f[i]);
for(int i=;i<=m;i++){scanf("%d%d%lf",&a,&b,&c);ins(a,b,c);} l=,r=;
while(r-l>1e-){
mid=(l+r)/;//printf("%.2f\n",mid);
if(spfanc(mid)) l=mid;
else r=mid;
}
printf("%.2f\n",mid);
}
return ;
}
dfs:
//
// main.cpp
// poj3621
//
// Created by Candy on 9/13/16.
// Copyright ? 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
const int N=,M=; int n,m,a,b;
double l,r,mid,f[N],c;
struct edge{
int v,ne;
double w;
}e[M];
int h[N],cnt=;
inline void ins(int u,int v,double w){
cnt++;
e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
} int vis[N],st;
double d[N];
inline bool dfs(int u,double p){
vis[u]=st;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v; double w=e[i].w*p-f[u];
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(vis[v]==vis[u]) return true;
else if(dfs(v,p)) return true;
}
}
vis[u]=;
return false;
}
bool nc(double p){
memset(vis,,sizeof(vis));
//memset(d,0,sizeof(d));
for(st=;st<=n;st++)
if(dfs(st,p)) return true; return false;
}
int main(int argc, const char * argv[]) {
while(cin>>n>>m){
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=n;i++) scanf("%lf",&f[i]);
for(int i=;i<=m;i++){scanf("%d%d%lf",&a,&b,&c);ins(a,b,c);} l=,r=;
while(r-l>1e-){
mid=(l+r)/;//printf("%.2f\n",mid);
if(nc(mid)) l=mid;
else r=mid;
}
printf("%.2f\n",mid);
}
return ;
}
POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]的更多相关文章
- 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)
传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...
- bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 594 Solved: 360[Submit][Statu ...
- POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】
题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total ...
- [HNOI2009]最小圈 分数规划 spfa判负环
[HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...
- [P1768]天路(分数规划+SPFA判负环)
题目描述 “那是一条神奇的天路诶~,把第一个神犇送上天堂~”,XDM先生唱着这首“亲切”的歌曲,一道猥琐题目的灵感在脑中出现了. 和C_SUNSHINE大神商量后,这道猥琐的题目终于出现在本次试题上了 ...
- bzoj 1690: [Usaco2007 Dec]奶牛的旅行——分数规划+spfa判负环
Description 作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天.旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇. 很幸运地,奶牛们找到了一张详细的城 ...
- bzoj1690:[Usaco2007 Dec]奶牛的旅行(分数规划+spfa判负环)
PS:此题数组名皆引用:戳我 题目大意:有n个点m条有向边的图,边上有花费,点上有收益,点可以多次经过,但是收益不叠加,边也可以多次经过,但是费用叠加.求一个环使得收益和/花费和最大,输出这个比值. ...
- [HNOI2009]最小圈(分数规划+SPFA判负环)
题解:求环长比环边个数的最小值,即求min{Σw[i]/|S|},其中i∈S.这题一眼二分,然后可以把边的个数进行转化,假设存在Σw[i]/|S|<=k,则Σw[i]-k|S|<=0,即Σ ...
- 2018.09.09 poj2949Word Rings(01分数规划+spfa判环)
传送门 这题要先巧妙的转化一下. 对于每个字符串,我们把头尾的两个小字符串对应的点连边,边权是这个字符串的长度. 这样最多会出现26*26个点. 这个时候就只用求出边权和跟边数的最大比值了. 这个显然 ...
随机推荐
- JSON.stringify()、JSON.parse()和eval(string)
1.JSON.stringify()用于从一个对象解析出字符串,eg: var obj = {"name":"奔跑的蜗牛","age":&q ...
- iOS 使用AFNetworking遇到错误 Request failed: unacceptable content-type: text/html
错误日志: Error Domain=com.alamofire.error.serialization.response Code=-1016 "Request failed: unacc ...
- [Android L]SEAndroid开放设备文件结点权限(读或写)方法(涵盖常用操作:sys/xxx、proc/xxx、SystemProperties)
温馨提示 建议你先了解一下上一篇博文([Android L]SEAndroid增强Androd安全性背景概要及带来的影响)所讲的内容,先对SEAndroid窥个全貌,然后再继续本节内容. ...
- 网络热恋之json解析
现在的app开发很少有用到XML解析的了,主流的则是JSON. // // ViewController.m // CX-JSON解析(三方JSONKit-master) #import " ...
- android 数据存储Ⅰ
本章讲述在Android开发中,简单的数据存储.涉及知识主要是SharedPreferences,及多页面切换ViewPager. 1.功能需求 做一个小应用.启动的时候有左右引导图.只有第一次启动时 ...
- WPF 命令基础
1命令的组成 命令源:就是谁发送的命令. 命令目标:就是这个命令发送给谁,谁接受的命令. 命令:就是命令的内容. 命令关联:就是把命令和外围的逻辑关联起来,主要用来判断命令是否可以执行和执行完以后干点 ...
- iOS [[NSBundle mainBundle] pathForResource:@"" ofType:@""]无法获取到文件
将一个文件导入到工程中后,用[[NSBundle mainBundle] pathForResource:@"" ofType:@""]来获取到该文件时,一直无 ...
- 在Window 下安装Redis数据库
小Alan国庆后就要回深圳找工作了,最近在复习工作所需的相关的技术,今天刚好复习到redis,redis是一个非关系型(NoSql)数据库,采用key-value的方式存储数据,她可以保存字符串(St ...
- FileOutputStream VS FileWriter
当我们使用Java往文件写入数据的时候,我们有两种方式,使用FileOutputStream或FileWriter. FileOutputStream: File fout = new File(fi ...
- Bootstrap弹出框(modal)垂直居中
最近在做一个eit项目,由于此项目里面一些框架要遵循nttdata的一些规则,故用到了Bootstrap这个东东,第一次碰到这个东东,有很大抵触,觉得不好,但用起来我觉得和别的弹出框真没什么两样.废话 ...