#include <stdio.h>
#include <stdlib.h>

/* 最小路径算法 --》prim算法 */

#define VNUM 9
#define MV 65536

int P[VNUM];
int Cost[VNUM];
int Mark[VNUM];    //标记数组
int Matrix[VNUM][VNUM] =     //邻居矩阵 无向图
{
    {0, 10, MV, MV, MV, 11, MV, MV, MV},
    {10, 0, 18, MV, MV, MV, 16, MV, 12},
    {MV, 18, 0, 22, MV, MV, MV, MV, 8},
    {MV, MV, 22, 0, 20, MV, MV, 16, 21},
    {MV, MV, MV, 20, 0, 26, MV, 7, MV},
    {11, MV, MV, MV, 26, 0, 17, MV, MV},
    {MV, 16, MV, MV, MV, 17, 0, 19, MV},
    {MV, MV, MV, 16, 7, MV, 19, 0, MV},
    {MV, 12, 8, 21, MV, MV, MV, MV, 0},
};
//sv开始
void Prim(int sv) // O(n*n)
{
    int i = 0;
    int j = 0;
    
    if( (0 <= sv) && (sv < VNUM) )
    {
        for(i=0; i<VNUM; i++)
        {
            Cost[i] = Matrix[sv][i];
            P[i] = sv;  //记录边数组
            Mark[i] = 0;//初始化0
        }
        
        Mark[sv] = 1;
        
        for(i=0; i<VNUM; i++)
        {
            int min = MV;
            int index = -1;
            
            for(j=0; j<VNUM; j++)
            {
                if( !Mark[j] && (Cost[j] < min) )
                {
                    min = Cost[j];
                    index = j;
                }
            }
            //成立 找到最小值 打印
            if( index > -1 )
            {
                Mark[index] = 1;
                
                printf("(%d, %d, %d)\n", P[index], index, Cost[index]);
            }
            //查看是否有最小的边存在
            for(j=0; j<VNUM; j++)
            {
            //刚刚被标记的边  
                if( !Mark[j] && (Matrix[index][j] < Cost[j]) )
                {
                    Cost[j]  = Matrix[index][j];
                    P[j] = index;
                }
            }
        }
    }
}

int main(int argc, char *argv[])
{
      Prim(0);
    
    return 0;
}

说明:

1.Prim算法是针对顶点展开的, 适合于边的数量较 适合于边的数量较多的情况。
2.Kruskal算法是针对边展开的, 适合于边的数量较 适合于边的数量较少的情况。

最小路径(prim)算法的更多相关文章

  1. 最小生成树问题---Prim算法与Kruskal算法实现(MATLAB语言实现)

    2015-12-17晚,复习,甚是无聊,阅<复杂网络算法与应用>一书,得知最小生成树问题(Minimum spanning tree)问题.记之. 何为树:连通且不含圈的图称为树. 图T= ...

  2. 最小生成树问题------------Prim算法(TjuOj_1924_Jungle Roads)

    遇到一道题,简单说就是找一个图的最小生成树,大概有两种常用的算法:Prim算法和Kruskal算法.这里先介绍Prim.随后贴出1924的算法实现代码. Prim算法 1.概览 普里姆算法(Prim算 ...

  3. 最小生成树问题---Prim算法学习

    一个具有n个节点的连通图的生成树是原图的最小连通子集,它包含了n个节点和n-1条边.若砍去任一条边,则生成树变为非连通图:若增加一条边,则在图中形成一条回路.本文所写的是一个带权的无向连通图中寻求各边 ...

  4. 算法之prim算法

    最小生成树是数据结构中图的一种重要应用,它的要求是从一个带权无向完全图中选择n-1条边并使这个图仍然连通(也即得到了一棵生成树),同时还要考虑使树的权最小. prim算法就是一种最小生成树算法. 普里 ...

  5. 最小生成树问题:Kruskal算法 AND Prim算法

    Kruskal算法: void Kruskal ( ) {     MST = { } ;                           //边的集合,最初为空集     while( Edge ...

  6. 最小生成二叉树-prim算法

    1.prim算法:一种计算生成最小生成树的方法,它的每一步都会为一棵生长中的树添加一条边. 2.时间复杂度:

  7. 【网络流24题】 No.3 最小路径覆盖问题 (网络流|匈牙利算法 ->最大二分匹配)

    [题意] 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交) 的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是 G 的一个路径覆盖. P 中路径可以从 V 的任何一 ...

  8. 算法学习记录-图——最小路径之Floyd算法

    floyd算法: 解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包. 设为从到的只以集合中的节点为中间节点的最短路径的长度. 若最短路径经过 ...

  9. 【LeetCode-面试算法经典-Java实现】【064-Minimum Path Sum(最小路径和)】

    [064-Minimum Path Sum(最小路径和)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given a m x n grid filled with ...

随机推荐

  1. 样条函数 -- spline function

    一类分段(片)光滑.并且在各段交接处也有一定光滑性的函数.简称样条.样条一词来源于工程绘图人员为了将一些指定点连接成一条光顺曲线所使用的工具,即富有弹性的细木条或薄钢条.由这样的样条形成的曲线在连接点 ...

  2. 离散系统频响特性函数freqz()

    MATLAB提供了专门用于求离散系统频响特性的函数freqz(),调用freqz()的格式有以下两种: l        [H,w]=freqz(B,A,N) B和A分别为离散系统的系统函数分子.分母 ...

  3. iOS -- MJrefresh

    - (void)refresh { MJRefreshGifHeader *header = [MJRefreshGifHeader headerWithRefreshingTarget:self r ...

  4. android SwipeRefreshLayout google官方下拉刷新控件

    下拉刷新功能之前一直使用的是XlistView很方便我前面的博客有介绍 SwipeRefreshLayout是google官方推出的下拉刷新控件使用方法也比较简单 今天就来使用下SwipeRefres ...

  5. PHP值传递和引用传递的区别

    PHP值传递和引用传递的区别.什么时候传值什么时候传引用 (1)按值传递:函数范围内对值的任何改变在函数外部都会被忽略 (2)按引用传递:函数范围内对值的任何改变在函数外部也能反映出这些修改 (3)优 ...

  6. 【CodeVS 2083】Cryptcowgraphy 解密牛语

    http://codevs.cn/problem/2083/ 奶牛搜索题.我加了如下剪枝: 1.用字符串hash判重.注意判重时也要对字符串长度判重,否则会出现两个字符串长度不同但hash值相同的情况 ...

  7. C#-WebForm-★ 制作图片验证码 ★

    在前台放在如下四个控件 <div> <asp:TextBox ID="TextBox1" runat="server"></asp ...

  8. ARP协议工作流程

    地址解析协议,即ARP(Address Resolution Protocol),是根据IP地址获取物理地址的一个TCP/IP协议.主机发送信息时将包含目标IP地址的ARP请求广播到网络上的所有主机, ...

  9. Python 学习笔记9(装饰器,decorator)

    31 装饰器 装饰器可以对一个函数.方法或者类进行加工,是一种高级的python语法. 装饰函数 接收一个可调用对象作为输入参数,并返回一个新的可调用对象. 把函数传递给装饰器,然后增加新的功能,返回 ...

  10. Linux安装后的基本配置

    1.换源 http://mirrors.zju.edu.cn http://mirrors.aliyun.com http://mirrors.ustc.edu.cn ubuntu替换/etc/apt ...