Matrix
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 17880   Accepted: 6709

Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).

We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 
2. Q x y (1 <= x, y <= n) querys A[x, y]. 

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.

The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.

Output

For each querying output one line, which has an integer representing A[x, y].

There is a blank line between every two continuous test cases.

Sample Input

1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1

Sample Output

1
0
0
1

Source

POJ Monthly,Lou Tiancheng

 
  二维线段树,矩阵取反,好题
 
  题意
  
  思路
  矩阵节点的值为是否取反,0为不取反,1为取反,暂称为取反值。
  取反操作的时候先找到这个矩阵代表的节点,然后将这个节点的值+1再模2,即取反。
  查询的时候,将(x,y)这个坐标经过的所有矩阵的取反值加起来,每次%2,最后那个值就为这个坐标最后的值。
  为什么%2,因为不是1就是0,矩阵记录了取反值,找这个坐标的过程中,经过的矩阵如果取反值为1,则结果变为0,在经过一个取反值为1的矩阵,结果又变为1…… 直到加到要找的坐标的取反值,这个结果记录的值就是这个坐标的取反值。这个时候输出结果。
 
  代码
 #include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std; #define MAXN 1100 int tree[MAXN*][MAXN*],s; void Negate_y(int d,int dy,int L,int R,int y1,int y2) //取反操作
{
if(L==y1 && R==y2){ //将这个矩阵的所有元素记录为取反
tree[d][dy] = (tree[d][dy]+) % ;
return ;
} int mid = (L+R)>>;
if(mid>=y2)
Negate_y(d,dy<<,L,mid,y1,y2);
else if(mid<y1)
Negate_y(d,dy<<|,mid+,R,y1,y2);
else{
Negate_y(d,dy<<,L,mid,y1,mid);
Negate_y(d,dy<<|,mid+,R,mid+,y2);
}
} void Negate_x(int d,int L,int R,int x1,int y1,int x2,int y2) //取反操作
{
if(L==x1 && R==x2){ //找到行块
Negate_y(d,,,s,y1,y2);
return ;
} int mid = (L+R)>>;
if(mid>=x2)
Negate_x(d<<,L,mid,x1,y1,x2,y2);
else if(mid<x1)
Negate_x(d<<|,mid+,R,x1,y1,x2,y2);
else{
Negate_x(d<<,L,mid,x1,y1,mid,y2);
Negate_x(d<<|,mid+,R,mid+,y1,x2,y2);
}
} int Query_y(int d,int dy,int L,int R,int r) //查询
{
if(L==R) //找到要找的坐标,输出这个坐标对应的值
return tree[d][dy]; //没找到
int mid = (L+R)>>;
if(mid >= r)
return (Query_y(d,dy<<,L,mid,r)+tree[d][dy]) % ;
else
return (Query_y(d,dy<<|,mid+,R,r)+tree[d][dy]) % ;
} int Query_x(int d,int L,int R,int l,int r) //查询
{
if(L==R){ //找到要找的行块,继续查找列块
return Query_y(d,,,s,r);
} //没找到
int mid = (L+R)>>;
if(mid >= l)
return (Query_x(d<<,L,mid,l,r) + Query_y(d,,,s,r)) % ;
else
return (Query_x(d<<|,mid+,R,l,r) + Query_y(d,,,s,r)) % ;
} int main()
{
int X,T,x,y,x1,y1,x2,y2;
scanf("%d",&X);
while(X--){
memset(tree,,sizeof(tree));
scanf("%d%d",&s,&T);
while(T--){
char c[];
scanf("%s",c);
if(c[]=='C'){
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
Negate_x(,,s,x1,y1,x2,y2);
}
else if(c[]=='Q'){
scanf("%d%d",&x,&y);
printf("%d\n",Query_x(,,s,x,y));
}
}
if(X!=)
printf("\n");
} return ;
}

Freecode : www.cnblogs.com/yym2013

poj 2155:Matrix(二维线段树,矩阵取反,好题)的更多相关文章

  1. poj 2155 matrix 二维线段树 线段树套线段树

    题意 一个$n*n$矩阵,初始全为0,每次翻转一个子矩阵,然后单点查找 题解 任意一种能维护二维平面的数据结构都可以 我这里写的是二维线段树,因为四分树的写法复杂度可能会退化,因此考虑用树套树实现二维 ...

  2. POJ 2155 Matrix (二维线段树入门,成段更新,单点查询 / 二维树状数组,区间更新,单点查询)

    题意: 有一个n*n的矩阵,初始化全部为0.有2中操作: 1.给一个子矩阵,将这个子矩阵里面所有的0变成1,1变成0:2.询问某点的值 方法一:二维线段树 参考链接: http://blog.csdn ...

  3. poj 2155 matrix 二维线段树

    题目链接 区间翻转, 单点查询, 查询操作我真是不太明白...... #include <iostream> #include <vector> #include <cs ...

  4. POJ2155 Matrix二维线段树经典题

    题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...

  5. POJ2155 Matrix 二维线段树

    关键词:线段树 二维线段树维护一个 维护一个X线段的线段树,每个X节点维护一个 维护一个Y线段的线段树. 注意,以下代码没有PushDownX.因为如果要这么做,PushDownX时,由于当前X节点的 ...

  6. POJ 2155 Matrix(二维树状数组,绝对具体)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Descripti ...

  7. poj 2155 Matrix (二维树状数组)

    题意:给你一个矩阵开始全是0,然后给你两种指令,第一种:C x1,y1,x2,y2 就是将左上角为x1,y1,右下角为x2,y2,的这个矩阵内的数字全部翻转,0变1,1变0 第二种:Q x1 y1,输 ...

  8. POJ 2155 Matrix(二维BIT)

    Matrix [题目链接]Matrix [题目类型]二维BIT &题解: bit只能单点更新,恰好,这题可以想一下就可以用单点更新解决了. 只不过最后我交上去居然T了,想了10多分钟,试了一下 ...

  9. POJ 2019 Cornfields 二维线段树的初始化与最值查询

    模板到不行.. 连更新都没有.. .存个模板. 理解留到小结的时候再写. #include <algorithm> #include <iostream> #include & ...

  10. CodeForces 242E二维线段树

                                                                                           E. XOR on Seg ...

随机推荐

  1. Android菜单Menu的创建

    在res目录下的menu文件夹下创建一个main.xml文件,内容如下: <?xml version="1.0" encoding="utf-8"?> ...

  2. Android Service1

    一.Service的种类 按运行地点分类: 类别 区别  优点 缺点   应用 本地服务(Local) 该服务依附在主进程上,  服务依附在主进程上而不是独立的进程,这样在一定程度上节约了资源,另外L ...

  3. 什么情况下可以不写PHP的结束标签“?>”

    我们经常看到有些PHP文件中的代码是只有开始标签,而没有结束标签的,那么什么情况下可以不写这个结束标签,而什么情况下必须写?先来看2个例子: 下面的代码正常运行: <?php echo 1234 ...

  4. How to keep Environment Variables when Using SUDO

    The trick is to add environment variables to sudoers file via sudo visudo command and add these line ...

  5. TCP三次握手原理详解

    TCP/IP协议不是TCP和IP这两个协议的合称,而是指因特网整个TCP/IP协议族. 从协议分层模型方面来讲,TCP/IP由四个层次组成:网络接口层.网络层.传输层.应用层. TCP协议:即传输控制 ...

  6. Word Search I & II

    Word Search I Given a 2D board and a word, find if the word exists in the grid. The word can be cons ...

  7. iOS 小经验:UIAnimation空对象导致crash

    今天调试一个老程序,发现有时运行动画会crash,仔细检查了基本的内存管理,发现都没问题!后来发现了问题,这个程序用的是下面的代码 [self performSelectorInBackground: ...

  8. java web 学习 --第九天(Java三级考试)

    第八天的学习内容如下:http://www.cnblogs.com/tobecrazy/p/3468458.html Java servlet 技术 Servlet是使用java servlet应用程 ...

  9. Greedy:Paint Color(AOJ 0531)

    涂颜料 题目大意:在一个1000000*1000000的矩阵中放入几块木板,问你这些木板把矩阵划分成了几个区域?输入会给左下角和右上角的坐标,输入W==0且H==0结束. 这一题是书上的作业题,书上有 ...

  10. 【linux】linux下动态库so文件的一些认识

    来源:http://mypyg.iteye.com/blog/845915 so其实就是shared object的意思.今天看了上面的博客,感觉好吃力.赶紧做个笔记记录一下.下面的内容大多都是连接中 ...