POJ 2115 C Looooops
扩展GCD。。。一定要(1L<<k),不然k=31是会出错的 。。。。
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 15444 | Accepted: 3941 |
Description
for (variable = A; variable != B; variable += C)
statement;
I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k.
Input
The input is finished by a line containing four zeros.
Output
Sample Input
Sample Output
0
2
32766
FOREVER
Source
#include <iostream>
#include <cstdio>
#include <cstring> using namespace std; typedef long long int LL; inline LL P(LL k){return (1LL<<k);} LL GCD(LL a,LL b)
{
return b==?a:GCD(b,a%b);
} LL EX_GCD(LL a,LL b,LL& x,LL& y)
{
if(b==)
{
x=;y=;
return a;
}
else
{
int ret=EX_GCD(b,a%b,x,y);
int t=x;
x=y; y=t-a/b*y;
return ret;
}
} int main()
{
LL a,b,c,k;
while(scanf("%I64d%I64d%I64d%I64d",&a,&b,&c,&k)!=EOF)
{
if(a==&&b==&&c==&&k==) break;
LL Aa=P(k),Bb=-c,Cc=a-b;
int d=GCD(Aa,Bb);
if(Cc%d!=)
{
puts("FOREVER");
continue;
}
LL A=Aa/d,B=Bb/d,C=Cc/d,X,Y;
EX_GCD(A,B,X,Y);
X=X*C;Y=Y*C;
if(A<) A=-A;
printf("%I64d\n",(Y%A+A)%A);
}
return ;
}
POJ 2115 C Looooops的更多相关文章
- POJ 2115 C Looooops(扩展欧几里得应用)
题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...
- 【题解】POJ 2115 C Looooops (Exgcd)
POJ 2115:http://poj.org/problem?id=2115 思路 设循环T次 则要满足A≡(B+CT)(mod 2k) 可得 A=B+CT+m*2k 移项得C*T+2k*m=B-A ...
- POJ 2115 C Looooops(模线性方程)
http://poj.org/problem?id=2115 题意: 给你一个变量,变量初始值a,终止值b,每循环一遍加c,问一共循环几遍终止,结果mod2^k.如果无法终止则输出FOREVER. 思 ...
- POJ 2115 C Looooops(Exgcd)
[题目链接] http://poj.org/problem?id=2115 [题目大意] 求for (variable = A; variable != B; variable += C)的循环次数, ...
- poj 2115 C Looooops——exgcd模板
题目:http://poj.org/problem?id=2115 exgcd裸题.注意最后各种%b.注意打出正确的exgcd板子.就是别忘了/=g. #include<iostream> ...
- Poj 2115 C Looooops(exgcd变式)
C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22704 Accepted: 6251 Descripti ...
- poj 2115 C Looooops 扩展欧几里德
C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 23616 Accepted: 6517 Descr ...
- POJ 2115 C Looooops扩展欧几里得
题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...
- poj 2115 C Looooops(扩展gcd)
题目链接 这个题犯了两个小错误,感觉没错,结果怒交了20+遍,各种改看别人题解,感觉思路没有错误,就是wa. 后来看diccuss和自己查错,发现自己的ecgcd里的x*(a/b)写成了x*a/b.还 ...
随机推荐
- PHP面向对象之朝花夕拾
虽然平时都在用面向对象的思维编程.但是都是基于框架,很多技术细节一段时间不用就会逐渐模糊.拾遗部分:面向对象的三大特称:继承多态封装. 构造方法.__construct() 构造方法.再new的时候 ...
- 常用机器视觉工具----图像分析工具(blob分析)
http://blog.sina.com.cn/s/blog_67cc4eb70100ivnt.html Blob分析:Blob分析目的在于对图像中的2-D形状进行检测和分析,得到诸如目标位置.形状. ...
- mybatis的逆向工程
mybatis的逆向工程是很大的减少了程序员对代码的编写工作,由于mybatis是半自动的sql语句使用,我们在项目中一般都是采用逆向工程来生成mybatis的文件,mapper接口相当于我们平常所说 ...
- BZOJ4445: [Scoi2015]小凸想跑步
裸半平面交. 记得把P0P1表示的半平面加进去,否则点可能在多边形外. #include<bits/stdc++.h> #define N 100009 using namespace s ...
- BZOJ2208: [Jsoi2010]连通数
tarjan缩点后拓扑排序,每一个点用一个bitset记录哪些点能到达它. PS:数据太水,暴力能过. #include<bits/stdc++.h> using namespace st ...
- 利用WireShark进行DNS协议分析
一.准备工作 系统是Windows 8.1Pro 分析工具是WireShark1.10.8 Stable Version 使用系统Ping命令发送ICMP报文. 二.开始工作 打开CMD.exe键入: ...
- ASP------如何使界面布局具有一致外观
使用布局页或布局块的方法 转载: http://www.runoob.com/aspnet/webpages-layout.html
- MySQL 随机取数据效率问题
本文详细解说了MySQL Order By Rand()效率优化的方案,并给出了优化的思路过程,是篇不可多得的MySQL Order By Rand()效率美文. 最近由于需要大概研究了一下MYSQL ...
- cobbler自动安装脚本
#!/bin/sh #coding=utf8 ################################################################## #将如下IP修改成你 ...
- ViewController respondsToSelector:]: message sent to deallocated instance
今天突然遇到这个问题,其实昨天下班的时候就已经有这个问题了, 就是先进入一个画页,然后再快速离开这个画页再进入其他画页就出现这个错误 了 找了好久也没有找出问题来,一开始以为是网络任务没有cancel ...