Prime & 反素数plus
题意:
求因数个数为n的最小正整数k. n<=10^9输出其唯一分解形式
SOL:
模拟题,一眼看过去有点惊讶...这不是我刚看过的反素数吗...
咦数据怎么这么大,恩搞个高精吧...
于是T了...
真是丝帛...因为这题不用输出答案而是输出质因子与指数,那么高精也没什么卵用...
想想我们在反素数的时候除了记录还要做一件什么事呢...比较答案与当前搜索的大小...但这里是在太大了,所以就要找一个更小的通用比较方法...
傻逼想到了高精,帅的人都用了log
log由于其良好的性质log(a*b)=log(a)+log(b).
于是balabalabalabala....
Code:
/*==========================================================================
# Last modified: 2016-03-18 08:32
# Filename: t1.cpp
# Description:
==========================================================================*/
#define me AcrossTheSky
#include <cstdio>
#include <ctime>
#include <cmath>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> #include <set>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <deque> #define lowbit(x) (x)&(-x)
#define FOR(i,a,b) for((i)=(a);(i)<=(b);(i)++)
#define FORP(i,a,b) for(int i=(a);i<=(b);i++)
#define FORM(i,a,b) for(int i=(a);i>=(b);i--)
#define ls(a,b) (((a)+(b)) << 1)
#define rs(a,b) (((a)+(b)) >> 1)
#define getlc(a) ch[(a)][0]
#define getrc(a) ch[(a)][1]
#define pb push_back
#define find(a,b) lower_bound((a).begin(), (a).end(), (b))-(a).begin() #define INF 10000000000
#define maxn 3000
#define maxm 100000
#define pi 3.1415926535898
#define _e 2.718281828459
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
template<class T> inline
void read(T& num) {
bool start=false,neg=false;
char c;
num=0;
while((c=getchar())!=EOF) {
if(c=='-') start=neg=true;
else if(c>='0' && c<='9') {
start=true;
num=num*10+c-'0';
} else if(start) break;
}
if(neg) num=-num;
}
/*==================split line==================*/
const double inf=1e18;
const double eps=0.00000001;
#define mx 107
int p[52]={0,2,3,5,7,11,
13,17,19,23,29,
31,37,41,43,47,
53,59,61,67,71,
73,79,83,89,97,
101,103,107,109,113,
127,131,137,139,149,
151,157,163,167,173,
179,181,191,193,197,
199};
int n,b[mx],c[mx];
double ans;
void dfs(int x,double t,int num,int m)
{
if (n%num) return;
if (num>n) return;
if (num==n&&ans>t)
{
for (int i=1;i<=x+1;i++) b[i]=c[i];
ans=t;
return;
}
else if (num==n) return;
if (ans-log(p[x])<t) return;
int d=n/num;
for (int i=1;i*i<=d;i++)
{
if (d%i==0)
{
if (i-1<=m&&i!=1)
{
c[x]=i-1;
dfs(x+1,t+log(p[x])*(i-1),num*i,i-1);
c[x]=0;
}
if (i*i!=d&&d/i-1<=m)
{
c[x]=d/i-1;
dfs(x+1,t+log(p[x])*(d/i-1),num*(d/i),d/i-1);
c[x]=0;
}
}
}
}
int main()
{
read(n);
ans=inf;
dfs(1,0,1,n);
if (n==1) printf("1^1"); else printf("%d^%d",p[1],b[1]);
for (int i=2;i<=45;i++)
{
if (!b[i]) break;
printf("*%d^%d",p[i],b[i]);
}
printf("\n");
return 0;
}
Prime & 反素数plus的更多相关文章
- poj 2886 (线段树+反素数打表) Who Gets the Most Candies?
http://poj.org/problem?id=2886 一群孩子从编号1到n按顺时针的方向围成一个圆,每个孩子手中卡片上有一个数字,首先是编号为k的孩子出去,如果他手上的数字m是正数,那么从他左 ...
- Who Gets the Most Candies?(线段树 + 反素数 )
Who Gets the Most Candies? Time Limit:5000MS Memory Limit:131072KB 64bit IO Format:%I64d &am ...
- BZOJ 3085: 反质数加强版SAPGAP (反素数搜索)
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3085 题意:求n(<=10^100)之内最大的反素数. 思路: 优化2: i ...
- 【BZOJ】【1053】【HAOI2007】反素数ant
搜索 经典搜索题目(其实是蒟蒻只会搜……vfleaking好像有更优秀的做法?) 枚举质数的幂,其实深度没多大……因为$2^32$就超过N了……而且质数不能取的太大,所以不会爆…… /******** ...
- HDU2521反素数
只是了解下这种简单的数论定义,解释可以戳这个 http://www.cnblogs.com/Findxiaoxun/p/3460450.html ,然后按Ctrl+ F搜索 反素数 ,找到那一部 ...
- bzoj 1053: [HAOI2007]反素数ant 搜索
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1497 Solved: 821[Submit][Sta ...
- [BZOJ 1053] [HAOI 2007] 反素数ant
题目链接:BZOJ 1053 想一想就会发现,题目让求的 1 到 n 中最大的反素数,其实就是 1 到 n 中因数个数最多的数.(当有多于一个的数的因数个数都为最大值时,取最小的一个) 考虑:对于一个 ...
- 1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3480 Solved: 2036[Submit][St ...
- [HAOI 2007]反素数ant
Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数 ...
随机推荐
- 数据结构和算法 – 7.散列和 Hashtable 类
7.1.散列函数 散列是一种常见的存储数据的技术,按照这种方式可以非常迅速地插入和取回数据.散列所采用的数据结构被称为是散列表.尽管散列表提供了快速地插入.删除.以及取回数据的操作,但是诸如查找最大值 ...
- EF – 6.一对一关联
5.6.6 <一对一关联概述> 5.6.7 <一对一关联CRUD演示> 在两讲视频中,首先介绍了数据库中一对一关联表的设计规范,接着通过实例介绍了如何合适Entity Fr ...
- 【转载】Pyqt QSplitter分割窗口
转载来自: http://blog.sina.com.cn/s/blog_4b5039210100h3ih.html 分割窗口在应用程序中经常用到,它可以灵活分布窗口布局,经常用于类似文件资源管理器的 ...
- 关于python装饰器(Decorators)最底层理解的一句话
一个decorator只是一个带有一个函数作为参数并返回一个替换函数的闭包. http://www.xxx.com/html/2016/pythonhexinbiancheng_0718/1044.h ...
- Linux中exec()执行文件系列函数的使用说明
函数原型: 描述: exec()系列函数使用新的进程映像替换当前进程映像. 工作方式没有什么差别, 只是参数传递的方式不同罢了. 说明: 1. 这6个函数可分为两大类: execl( ...
- centos(x86 64位系统)使用boost
1. 安装gcc,g++,make等开发环境 yum groupinstall "Development Tools" 2. 安装boost yum install boost b ...
- android 入门-基础了解
strings.xml – 文字資源. colors.xml – 顏色資源. dimens.xml – 尺寸資源. arrays.xml – 陣列資源. styles.xml – 樣式資源. #RGB ...
- 谈谈网站插入youtube视频播放
最近需要在网页首页追加视频播放功能. 需要播放youtube视频.中间遇到一些波折.特来分享一下. 首先像网页添加视频文件我们通常够采用embed标签. 标签里可以设置很多的关键子.我们可以配置为fl ...
- JS 捕获 input 中 键盘按键
JS 捕获 input 中 键盘按键 的相应处理事件是很简单的,google搜索一下很容易找到处理方式,请看如下一种简单的处理方式: HTML代码: <div> <input typ ...
- T-SQL Transact-SQL 编程
T-SQL语句用于管理SQL Server数据库引擎实例,创建和管理数据库对象,以及查询.插入.修改和删除数据. Ø 变量 . 局部变量(Local Variable) 局部变量是用户可以自定义的变量 ...