转发注明出处:http://www.cnblogs.com/0zcl/p/6120389.html

背景介绍

1976年以前,所有的加密方法都是同一种模式:

  (1)甲方选择某一种加密规则,对信息进行加密;

  (2)乙方使用同一种规则,对信息进行解密。

由于加密和解密使用同样规则(简称"密钥"),这被称为"对称加密算法"(Symmetric-key algorithm)。

这种加密模式有一个最大弱点:甲方必须把加密规则告诉乙方,否则无法解密。保存和传递密钥,就成了最头疼的问题。

1976年,两位美国计算机学家Whitfield Diffie 和 Martin Hellman,提出了一种崭新构思,可以在不直接传递密钥的情况下,完成解密。这被称为"Diffie-Hellman密钥交换算法"。这个算法启发了其他科学家。人们认识到,加密和解密可以使用不同的规则,只要这两种规则之间存在某种对应关系即可,这样就避免了直接传递密钥。

这种新的加密模式被称为"非对称加密算法"。

  (1)乙方生成两把密钥(公钥和私钥)。公钥是公开的,任何人都可以获得,私钥则是保密的。

  (2)甲方获取乙方的公钥,然后用它对信息加密。

  (3)乙方得到加密后的信息,用私钥解密。

如果公钥加密的信息只有私钥解得开,那么只要私钥不泄漏,通信就是安全的。

1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。从那时直到现在,RSA算法一直是最广为使用的"非对称加密算法"。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。

这种算法非常可靠,密钥越长,它就越难破解。根据已经披露的文献,目前被破解的最长RSA密钥是768个二进制位。也就是说,长度超过768位的密钥,还无法破解(至少没人公开宣布)。因此可以认为,1024位的RSA密钥基本安全,2048位的密钥极其安全。

RSA算法原理

RSA算法需要一些数学知识,不过别怂,不难的。我总结了一下,大概需要以下三部分的知识:

  • 互质关系(这,很简单)
  • 欧拉公式(难,我是直接记公式的)
  • 模反元素(不难的)

接下来说下每个部分的内容:

1、互质关系:如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是互质关系(coprime)。比如,15和32没有公因子,所以它们是互质关系。这说明,不是质数也可以构成互质关系。

2、先说下 欧拉函数:φ(n)为比n小但与n互素的正整数个数,称为n的欧拉函数。对任一素数p, 有φ(n)=p-1,而对于两个不同的素数p和q,则对n=pq,可以证明φ(n)=φ(pq)=(p-1)(q-1)=φ(p)*φ(q)

3、模反元素:如何求模反元素(逆元),用辗转相除法,我在上一篇博客<信息安全-4:公钥密码体制之背包算法[原创]>有说,看了一定会懂的!

上面3点一定要GET,不然不用往下看了~~

RSA算法的过程

RSA算法可归纳如下:

  1. 选择两个素数p和q,计算n=p*q,φ(n)=(p-1)(q-1),选择整数e,使gcd(φ(n), e)=1,1<e<φ(n),计算逆元d=e-1modφ(n),于是得到公钥KU={e, n},私钥={d, n},而把p和q丢弃(PS:gcd(φ(n), e)=1 表示最大公约数为1,下面编程有用到~)。
  2. 加密(用公钥KU):明文M<n, 密文:C=mmod n
  3. 解密(用私钥KR):密文:C, 明文:M=Cd mod n

上面过程很重要!!! 刚开始看会有点懵逼,看下面的例子,一定会懂!

我们通过一个例子,来理解RSA算法。假设Alice想发送明文9726给Bob,这之间的过程是怎样的?又是怎样生成公钥和私钥呢?

(1)Bob生成密钥 

Bob选择两个互异素数p=101和q=113,计算:n=pq=101*113=11413, φ(n)=(p-1)(q-1)=100*112=11200

由于加密密钥e必须与φ(n)没有公因子,假设Bob随机选择了e=3533,则用辗转相除法可求得: d=e-1=3533-1 mod 11200=6597

于是Bob公布他的公钥KU={3533, 11413}, 将私钥KR={6597, 11413}保密。

(2)Alice加密信息

由于Bob的公钥是公开的,任何人都可得到,因此Alice使用Bob的公钥来加密即将发送给Bob的明文信息。

Alice计算: 97263533 mod 11413=5761, 然后在一个信道上发送密文5761.

(3)Bob解密密文

当Bob接收到密文5761时,他用他的私钥进行解密。

Bob计算: 57616597 mod 11413=9726, 这样Bob就得到Alice发给他的明文信息了!!!

RSA算法编程实现

流程图

我画的流程图网址: https://www.processon.com/diagraming/583fb2c0e4b0d0d77bcfa514

ReadMe:

  1. 运行环境为python3.4   Windows8.1, 程序代码用Python语言写的
  2. 质数P,Q是我自己给出的,当然也可以随机生成
  3. 运行时,必须先加密再解密,因为先加密才有逆元给解密模块进行运算
  4. 运行时有一些测试打印出来,为了方便了解程序运行过程,我这里就没有去除。

源代码

 #RSA加密算法

 import random
# p,q是两个不同的素数n=pq,按理说应该随机产生,这里我用p=101,q=103为例 P = 101
Q = 113
N = P * Q
global _E # 把逆元定义为全局变量,才能在解密模块调用
_E = 0 #初始为0 #欧拉公式:如果n是质数,则 φ(n)=n-1 。因为质数与小于它的每一个数,都构成互质关系
F = (P-1) * (Q-1) #求最大公约数,若最大公约数是1,且m,n>1,m与n不等,则说明m,n互质
def comm_div(m, n): #m>n
temp = m % n
while(temp != 0):
m = n
n = temp
temp = m % n
if n == 1: #说明互质,返回True
return True # 在1-9999之间随机选择一个整数e,条件是1< e < F,且e与F 互质
# 互质即说明e,F的公因子有且仅有1
def e_product():
while True:
rand = random.randrange(2, F)
if comm_div(F, rand):
e = rand
return e #用辗转相除法求质数e关于欧拉公式F的逆元
def _e_product(e, F):
a_list = []
m = F
n = e
temp = m % n while (temp != 0):
a = (m - temp) / n
a_list.append(a)
m = n
n = temp
temp = m % n
print("a_list:", a_list)
a_list.reverse() #逆序
print("a_list_reverse:", a_list)
b_list = []
b_list.append(1)
b_list.append(a_list[0])
print("(最初插入的两个1及a_list[0])b_list:", b_list)
for i in range(len(a_list)-1):
b = b_list[-1] * a_list[i+1] + b_list[-2]
b_list.append(b) print("b_list", b_list)
#a_list存放的是商数,如果商数个数是偶数 b_list[-1]即为所求逆元
#若为奇数,F-b_list[-1]为所求的逆元
if len(a_list) % 2 == 0: #偶数
return b_list[-1]
else:
return F - b_list[-1] #传入明文(数字)和公钥,进行加密,返回密文
def core_encryption(clear_text, e, N):
clear = clear_text
for i in range(e-1):
clear_text = clear_text * clear
cipher_text = clear_text % N
return cipher_text def encryption(clear_text):
clear_text = int(clear_text)
e = e_product()
print("随机产生的e:%s" % e)
global _E #对全局变量进行重新赋值,需要global
_E = _e_product(e, F)
# print("逆元_e:", _E)
# print("逆元类型:",type(_E))
print("公钥KU:%d,%d\n私钥KR:%d,%d" % (e,N, _E,N))
cipher_text = core_encryption(clear_text,e,N)
return cipher_text #根据之前加密生成的私钥进行解密,所以必须先有加密才行的
def decryption(cipher_text, _e, N):
cipher_text = int(cipher_text)
cipher = cipher_text
# print(_e)
# print("逆元_e类型:",type(_e))
for i in range(_e-1):
cipher_text = cipher_text * cipher
clear_text = cipher_text % N
return clear_text if __name__ == "__main__":
while True:
print("必须先加密后解密!".center(50, "-"))
choice = input("Input E for encryption or D for decryption:")
if choice == "E":
clear_text = input("请输入明文(只允许数字):")
if clear_text.strip().isalnum():
print("加密成功!密文为:%d" % encryption(clear_text))
if choice == "D":
cipher_text = input("请输入密文:")
if cipher_text.strip().isalnum():
print("解密成功!明文为:%d" % decryption(cipher_text, _E, N))

问题

在测试时我遇到了下面这个问题

 C:\Python34\python3.exe C:/Users/Administrator/PycharmProjects/xingxi/playfair/RSA.py
--------------------必须先加密后解密!---------------------
Input E for encryption or D for decryption:E
请输入明文(只允许数字):9726
随机产生的e:2147
a_list: [5.0, 4.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 1.0]
a_list_reverse: [1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 4.0, 5.0]
(最初插入的两个1及a_list[0])b_list: [1, 1.0]
b_list [1, 1.0, 2.0, 3.0, 8.0, 11.0, 19.0, 30.0, 49.0, 79.0, 128.0, 591.0, 3083.0]
公钥KU:2147,11413
私钥KR:3083,11413
加密成功!密文为:5200
--------------------必须先加密后解密!---------------------
Input E for encryption or D for decryption:D
请输入密文:5200
Traceback (most recent call last):
File "C:/Users/Administrator/PycharmProjects/xingxi/playfair/RSA.py", line 116, in <module>
print("解密成功!明文为:%d" % decryption(cipher_text, _E, N))
File "C:/Users/Administrator/PycharmProjects/xingxi/playfair/RSA.py", line 99, in decryption
for i in range(_e-1):
TypeError: 'float' object cannot be interpreted as an integer Process finished with exit code 1

现在已经解决了,问题出在了下面第6行代码,rang()函数里面不能是float型,只需要int(_e-1)转型即可解决!

 def decryption(cipher_text, _e, N):
cipher_text = int(cipher_text)
cipher = cipher_text
# print(_e)
# print("逆元_e类型:",type(_e))
for i in range(_e-1):
cipher_text = cipher_text * cipher
clear_text = cipher_text % N
return clear_text

你可能会说,毛线,这么简单的坑你都跳(鄙视脸)。

好吧,这都怪我在这之前输出了一条测试print("_e:%d" % _e),然后我运行时看到输出的是整型,就蒙比了,心想:明明是int型,怎么会爆错说float型!!!这大概就是所谓的被自己挖的坑坑到怀疑人生吧~~

 测试(为了方便我日后再来看,一些打印测试我没有去除)

 C:\Python34\python3.exe C:/Users/Administrator/PycharmProjects/xingxi/playfair/RSA.py
--------------------必须先加密后解密!---------------------
Input E for encryption or D for decryption:E
请输入明文(只允许数字):9726
随机产生的e:4031
a_list: [2.0, 1.0, 3.0, 1.0, 1.0, 17.0, 2.0, 1.0, 3.0]
a_list_reverse: [3.0, 1.0, 2.0, 17.0, 1.0, 1.0, 3.0, 1.0, 2.0]
(最初插入的两个1及a_list[0])b_list: [1, 3.0]
b_list [1, 3.0, 4.0, 11.0, 191.0, 202.0, 393.0, 1381.0, 1774.0, 4929.0]
公钥KU:4031,11413
私钥KR:6271,11413
加密成功!密文为:325
--------------------必须先加密后解密!---------------------
Input E for encryption or D for decryption:D
请输入密文:325
解密成功!明文为:9726
--------------------必须先加密后解密!---------------------
Input E for encryption or D for decryption:E
请输入明文(只允许数字):25
随机产生的e:6403
a_list: [1.0, 1.0, 2.0, 1.0, 75.0, 2.0]
a_list_reverse: [2.0, 75.0, 1.0, 2.0, 1.0, 1.0]
(最初插入的两个1及a_list[0])b_list: [1, 2.0]
b_list [1, 2.0, 151.0, 153.0, 457.0, 610.0, 1067.0]
公钥KU:6403,11413
私钥KR:1067,11413
加密成功!密文为:10272
--------------------必须先加密后解密!---------------------
Input E for encryption or D for decryption:D
请输入密文:10272
解密成功!明文为:25
--------------------必须先加密后解密!---------------------
Input E for encryption or D for decryption:

注:RSA算法背景参考自http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html

博客参考书籍:信息安全概论(凌捷  谢赞福   编著)

接下来一个月信息安全方面可能最多会再写一篇博客, 重心会放在人工智能和操作系统!fight!

信息安全-5:RSA算法详解(已编程实现)[原创]的更多相关文章

  1. 安全体系(二)——RSA算法详解

    本文主要讲述RSA算法使用的基本数学知识.秘钥的计算过程以及加密和解密的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 1.概述 ...

  2. [转载]RSA算法详解

    原文:http://www.matrix67.com/blog/archives/5100 数论,数学中的皇冠,最纯粹的数学.早在古希腊时代,人们就开始痴迷地研究数字,沉浸于这个几乎没有任何实用价值的 ...

  3. RSA算法详解

    1.RSA加密算法是最常用的非对称加密算法 2.RSARSA以它的三个发明者Ron Rivest, Adi Shamir, Leonard Adleman的名字首字母命名, 3.目前学术界无法证明RS ...

  4. RSA算法详解及C语言实现

    RSA算法它是第一个既能用于数据加密也能用于数字签名的算法.它易于理解和操作,也很流行.算法的名字以发明者的名字命名:Ron Rivest, Adi Shamir 和Leonard Adleman.但 ...

  5. 安全体系(三)——SHA1算法详解

    本文主要讲述使用SHA1算法计算信息摘要的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 安全体系(二)——RSA算法详解 为保 ...

  6. 安全体系(一)—— DES算法详解

    本文主要介绍了DES算法的步骤,包括IP置换.密钥置换.E扩展置换.S盒代替.P盒置换和末置换. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(二)——RSA算 ...

  7. 《算法详解:C++11语言描述》已出版

    经过漫长的编写.修订和印刷过程,书籍<算法详解:C++11语言描述>终于出版了!目前本书已在各大电商平台上架,搜索书名即可找到对应商品.本书的特色在于: 介绍最新的C++11.C++14和 ...

  8. kmp算法详解

    转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...

  9. EM算法详解

    EM算法详解 1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成 ...

随机推荐

  1. 论:开发者信仰之“天下IT是一家“(Java .NET篇)

    比尔盖茨公认的IT界领军人物,打造了辉煌一时的PC时代. 2008年,史蒂夫鲍尔默接替了盖茨的工作,成为微软公司的总裁. 2013年他与微软做了最后的道别. 2013年以后,我才真正看到了微软的变化. ...

  2. Markdown 图片助手-MarkdownPicPicker

    title: Markdown 图片助手 v0.1 toc: true comments: true date: 2016-06-04 16:40:06 tags: [Python, Markdown ...

  3. Linux CentOS 配置JDK环境

    一.下载JDK 下载JDK的方式有两种: 1.Linux中使用wget下载 1.使用命令安装wget yum install wget 2.下载 wget 'http://download.oracl ...

  4. SQL:指定名称查不到数据的衍伸~空格 换行符 回车符的批量处理

    异常处理汇总-数据库系列  http://www.cnblogs.com/dunitian/p/4522990.html 先看看啥情况 复制查询到的数据,粘贴一下看看啥情况 那就批量处理一下~ 就这样 ...

  5. 自定义Inspector检视面板

    Unity中的Inspector面板可以显示的属性包括以下两类:(1)C#以及Unity提供的基础类型:(2)自定义类型,并使用[System.Serializable]关键字序列化,比如: [Sys ...

  6. PowerShell实现批量重命名文件

    [string]$FileName="E:\test11" #-------------------------------------- Clear-Host foreach($ ...

  7. UWP开发之Template10实践:本地文件与照相机文件操作的MVVM实例(图文付原代码)

    前面[UWP开发之Mvvmlight实践五:SuspensionManager中断挂起以及复原处理]章节已经提到过Template10,为了认识MvvmLight的区别特做了此实例. 原代码地址:ht ...

  8. 分享两个BPM配置小技巧

    1.小技巧 流程图修改后发布的话版本号会+1,修改次数多了之后可能会导致版本号很高,这个时候可以将流程导出,然后删除对应的流程包再导入,发布数据模型和流程图之后,版本清零 2.小技巧 有的同事入职后使 ...

  9. 【SAP业务模式】之ICS(四):组织单元的配置

    SAP的ICS业务后台配置主要有以下几个配置点: 1.组织单元的配置(公司代码.销售组织.工厂.采购组织等): 2.主数据的部分: 3.订单和开票的定价过程: 4.开票输出类型: 5.公司间发票的配置 ...

  10. android绘制圆形图片的两种方式

    看下效果先 下面有完整的示例代码 使用BitmapShader(着色器) 我们在绘制view 的时候 就是小学上美术课 用水彩笔在本子上画画 使用着色器绘制圆形图片最简单的理解方式 就是把bitmap ...