欢迎访问我的新博客:http://www.milkcu.com/blog/

原文地址:http://www.milkcu.com/blog/archives/uva10139.html

原创:

作者:MilkCu

题目描述

Problem D: Factovisors

The factorial function, n! is defined thus for n a non-negative integer:

   0! = 1
n! = n * (n-1)! (n > 0)

We say that a divides b if there exists an integer k such that

   k*a = b

The input to your program consists of several lines, each containing two non-negative integers, n and m, both less than 2^31. For each input line, output a line stating whether or not m divides n!, in the format
shown below.

Sample Input

6 9
6 27
20 10000
20 100000
1000 1009

Output for Sample Input

9 divides 6!
27 does not divide 6!
10000 divides 20!
100000 does not divide 20!
1009 does not divide 1000!

解题思路

思路比较流畅,依次求2~n之间的数与m的最大公约数,然后用公约数去除m。

若m能被除尽,则m可以整除n!;否则不能。

但是提交到UVaOJ为什么会超时呢?看来还需要优化。



如果在遍历2~n之间的数时,遇到的数i为质数。

若m为素数且m>n,则m与2~n中的任何数互素。

其他优化:把开方放在循环外边。

从n到2递减寻找最大公约数可以提高效率。



还要注意特殊情况的处理。



PC可以通过,UVaOJ总是超时,太浪费时间了。

对于我的不高的要求,以后使用PC吧。

两种求最大公约数的方法:

1. 递归

int gcd(int a, int b) {
if(b == 0) {
return a;
}
if(a < b) {
return gcd(b, a);
}
return gcd(b, a % b);
}

2. 循环

int gcd(int a, int b) {
if(a < b) {
int tmp = a;
a = b;
b = tmp;
}
while(b > 0) {
int tmp = a;
a = b;
b = tmp % b;
}
return a;
}

代码实现

#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
int isPrime(int x) {
int sq = sqrt(x);
for(int i = 2; i <= sq; i++) {
if(x % i == 0) {
return 0;
}
}
return 1;
}
int gcd(int a, int b) {
if(a < b) {
int tmp = a;
a = b;
b = tmp;
}
while(b > 0) {
int tmp = a;
a = b;
b = tmp % b;
}
return a;
}
int main(void) {
int n, m;
while(cin >> n >> m) {
if(m == 0) {
cout << m << " does not divide " << n << "!" << endl;
continue;
}
if(m == 1) {
cout << m << " divides " << n << "!" << endl;
continue;
}
if(isPrime(m) && m > n) {
cout << m << " does not divide " << n << "!" << endl;
continue;
}
int tm = m;
for(int i = n; i >= 2; i--) {
int g = gcd(i, tm);
if(g > 1) {
//cout << i << " " << g << endl;
tm /= g;
}
if(tm == 1) {
cout << m << " divides " << n << "!" << endl;
break;
}
}
if(tm != 1) {
cout << m << " does not divide " << n << "!" << endl;
}
}
return 0;
}

(全文完)

本文地址:http://blog.csdn.net/milkcu/article/details/23592449

Factovisors - PC110704的更多相关文章

  1. UVA 10139 Factovisors(数论)

    Factovisors The factorial function, n! is defined thus for n a non-negative integer: 0! = 1 n! = n * ...

  2. poj 2649 Factovisors 对n!进行因数分解

    Factovisors Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4431   Accepted: 1086 Descr ...

  3. Kattis之旅——Factovisors

    The factorial function, n! is defined thus for n a non-negative integer: 0! = 1 n! = n * (n-1)! (n & ...

  4. (Step1-500题)UVaOJ+算法竞赛入门经典+挑战编程+USACO

    http://www.cnblogs.com/sxiszero/p/3618737.html 下面给出的题目共计560道,去掉重复的也有近500题,作为ACMer Training Step1,用1年 ...

  5. ACM训练计划step 1 [非原创]

    (Step1-500题)UVaOJ+算法竞赛入门经典+挑战编程+USACO 下面给出的题目共计560道,去掉重复的也有近500题,作为ACMer Training Step1,用1年到1年半年时间完成 ...

  6. HOJ题目分类

    各种杂题,水题,模拟,包括简单数论. 1001 A+B 1002 A+B+C 1009 Fat Cat 1010 The Angle 1011 Unix ls 1012 Decoding Task 1 ...

  7. 开涛spring3(9.3) - Spring的事务 之 9.3 编程式事务

    9.3  编程式事务 9.3.1  编程式事务概述 所谓编程式事务指的是通过编码方式实现事务,即类似于JDBC编程实现事务管理. Spring框架提供一致的事务抽象,因此对于JDBC还是JTA事务都是 ...

  8. 算法竞赛入门经典+挑战编程+USACO

    下面给出的题目共计560道,去掉重复的也有近500题,作为ACMer Training Step1,用1年到1年半年时间完成.打牢基础,厚积薄发. 一.UVaOJ http://uva.onlinej ...

  9. 从“n!末尾有多少个0”谈起

    在学习循环控制结构的时候,我们经常会看到这样一道例题或习题.问n!末尾有多少个0?POJ 1401就是这样的一道题. [例1]Factorial (POJ 1401). Description The ...

随机推荐

  1. DevExpress XtraReports 入门一 创建 Hello World 报表

    原文:DevExpress XtraReports 入门一 创建 Hello World 报表 本文只是为了帮助初次接触或是需要DevExpress XtraReports报表的人群使用的,为了帮助更 ...

  2. GPS坐标互转:WGS-84(GPS)、GCJ-02(Google地图)、BD-09(百度地图)[转]

    WGS-84:是国际标准,GPS坐标(Google Earth使用.或者GPS模块)GCJ-02:中国坐标偏移标准,Google Map.高德.腾讯使用BD-09:百度坐标偏移标准,Baidu Map ...

  3. hdu 4972 A simple dynamic programming problem(高效)

    pid=4972" target="_blank" style="">题目链接:hdu 4972 A simple dynamic progra ...

  4. Hadoop上传文件的报错

    baidu了很多,都说防火墙,datanode没有正常启动的问题,可是检查了都是正常,后来还是在老外的网站上找到了解决的方法 修改了/etc/security/limits.conf文件,上传成功 这 ...

  5. android 编译共享ccache的缓存

    1. android自带的ccache版本号(2.4版本号)过低,是无法支持以上的功能的,须要使用新版ccache. 2. 最新的ccache请到http://ccache.samba.org/dow ...

  6. 使用Visual Studio创建映像向导(Image Sprite)——Web Essential

    原版的:Creating Image Sprite in Visual Studio - Web Essential 译者注:有关图片精灵的信息请參阅http://baike.baidu.com/vi ...

  7. printf与++的puzzle

    int b = 0; int c = 0; int main(int argc, const char *argv[]) { printf("%d %d %d %d %d",b,b ...

  8. NodeJS,我对“高、高、非”的一些看法

    ·众所周知 NodeJS三大神器"事件驱动,V8,回调函数". ·事件驱动,故名思议:等快递和收快递区别.NodeJS将原先大牛们掌握的神神秘秘的EPOLL走向大众化,这点是最大的 ...

  9. PyCharm 使用简介

    PyCharm 使用简介 最近由于项目需要,领导要求使用python以方便扩展,没有办法,赶鸭子上架花了2天时间翻完了python的初级教程然后就开始写代码.有一款好的IDE可以帮助我快速上手一门新语 ...

  10. .NET到Node.js

    从.NET到Node.js谈前后端分离实践(by vczero)   一.最初的[无分离]实践 11年末的时候,用winForm开发程序,拖拖控件,点点按钮,连接数据库,做一些基本的管理系统:Java ...