KMP算法详解

如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段。

我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法。KMP算法是拿来处理字符串匹配的。换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是否包含B串)。比如,字符串A="I'm matrix67",字符串B="matrix",我们就说B是A的子串。你可以委婉地问你的MM:“假如你要向你喜欢的人表白的话,我的名字是你的告白语中的子串吗?”
    解决这类问题,通常我们的方法是枚举从A串的什么位置起开始与B匹配,然后验证是否匹配。假如A串长度为n,B串长度为m,那么这种方法的复杂度是O (mn)的。虽然很多时候复杂度达不到mn(验证时只看头一两个字母就发现不匹配了),但我们有许多“最坏情况”,比如,A= "aaaaaaaaaaaaaaaaaaaaaaaaaab",B="aaaaaaaab"。我们将介绍的是一种最坏情况下O(n)的算法(这里假设 m<=n),即传说中的KMP算法。
    之所以叫做KMP,是因为这个算法是由Knuth、Morris、Pratt三个提出来的,取了这三个人的名字的头一个字母。这时,或许你突然明白了AVL 树为什么叫AVL,或者Bellman-Ford为什么中间是一杠不是一个点。有时一个东西有七八个人研究过,那怎么命名呢?通常这个东西干脆就不用人名字命名了,免得发生争议,比如“3x+1问题”。扯远了。
    个人认为KMP是最没有必要讲的东西,因为这个东西网上能找到很多资料。但网上的讲法基本上都涉及到“移动(shift)”、“Next函数”等概念,这非常容易产生误解(至少一年半前我看这些资料学习KMP时就没搞清楚)。在这里,我换一种方法来解释KMP算法。

假如,A="abababaababacb",B="ababacb",我们来看看KMP是怎么工作的。我们用两个指针i和j分别表示,A[i-j+ 1..i]与B[1..j]完全相等。也就是说,i是不断增加的,随着i的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前 j个字符(j当然越大越好),现在需要检验A[i+1]和B[j+1]的关系。当A[i+1]=B[j+1]时,i和j各加一;什么时候j=m了,我们就说B是A的子串(B串已经整完了),并且可以根据这时的i值算出匹配的位置。当A[i+1]<>B[j+1],KMP的策略是调整j的位置(减小j值)使得A[i-j+1..i]与B[1..j]保持匹配且新的B[j+1]恰好与A[i+1]匹配(从而使得i和j能继续增加)。我们看一看当 i=j=5时的情况。

i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B = a b a b a c b
    j = 1 2 3 4 5 6 7

此时,A[6]<>B[6]。这表明,此时j不能等于5了,我们要把j改成比它小的值j'。j'可能是多少呢?仔细想一下,我们发现,j'必须要使得B[1..j]中的头j'个字母和末j'个字母完全相等(这样j变成了j'后才能继续保持i和j的性质)。这个j'当然要越大越好。在这里,B [1..5]="ababa",头3个字母和末3个字母都是"aba"。而当新的j为3时,A[6]恰好和B[4]相等。于是,i变成了6,而j则变成了 4:

i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =     a b a b a c b
    j =     1 2 3 4 5 6 7

从上面的这个例子,我们可以看到,新的j可以取多少与i无关,只与B串有关。我们完全可以预处理出这样一个数组P[j],表示当匹配到B数组的第j个字母而第j+1个字母不能匹配了时,新的j最大是多少。P[j]应该是所有满足B[1..P[j]]=B[j-P[j]+1..j]的最大值。
    再后来,A[7]=B[5],i和j又各增加1。这时,又出现了A[i+1]<>B[j+1]的情况:

i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =     a b a b a c b
    j =     1 2 3 4 5 6 7

由于P[5]=3,因此新的j=3:

i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =         a b a b a c b
    j =         1 2 3 4 5 6 7

这时,新的j=3仍然不能满足A[i+1]=B[j+1],此时我们再次减小j值,将j再次更新为P[3]:

i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =             a b a b a c b
    j =             1 2 3 4 5 6 7

现在,i还是7,j已经变成1了。而此时A[8]居然仍然不等于B[j+1]。这样,j必须减小到P[1],即0:

i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =               a b a b a c b
    j =             0 1 2 3 4 5 6 7

终于,A[8]=B[1],i变为8,j为1。事实上,有可能j到了0仍然不能满足A[i+1]=B[j+1](比如A[8]="d"时)。因此,准确的说法是,当j=0了时,我们增加i值但忽略j直到出现A[i]=B[1]为止。
    这个过程的代码很短(真的很短),我们在这里给出:

j:=0;
for i:=1 to n do
begin
   while (j>0) and (B[j+1]<>A[i]) do j:=P[j];
   if B[j+1]=A[i] then j:=j+1;
   if j=m then
   begin
      writeln('Pattern occurs with shift ',i-m);
      j:=P[j];
   end;
end;

最后的j:=P[j]是为了让程序继续做下去,因为我们有可能找到多处匹配。
    这个程序或许比想像中的要简单,因为对于i值的不断增加,代码用的是for循环
。因此,这个代码可以这样形象地理解:扫描字符串A,并更新可以匹配到B的什么位置。

现在,我们还遗留了两个重要的问题:一,为什么这个程序是线性的;二,如何快速预处理P数组。
    为什么这个程序是O(n)的?其实,主要的争议在于,while循环使得执行次数出现了不确定因素。我们将用到时间复杂度的摊还分析中的主要策略,简单地说就是通过观察某一个变量或函数值的变化来对零散的、杂乱的、不规则的执行次数进行累计。KMP的时间复杂度分析可谓摊还分析的典型。我们从上述程序的j 值入手。每一次执行while循环都会使j减小(但不能减成负的),而另外的改变j值的地方只有第五行。每次执行了这一行,j都只能加1;因此,整个过程中j最多加了n个1。于是,j最多只有n次减小的机会(j值减小的次数当然不能超过n,因为j永远是非负整数)。这告诉我们,while循环总共最多执行了n次。按照摊还分析的说法,平摊到每次for循环中后,一次for循环的复杂度为O(1)。整个过程显然是O(n)的。这样的分析对于后面P数组预处理的过程同样有效,同样可以得到预处理过程的复杂度为O(m)。
    预处理不需要按照P的定义写成O(m^2)甚至O(m^3)的。我们可以通过P[1],P[2],…,P[j-1]的值来获得P[j]的值。对于刚才的B="ababacb",假如我们已经求出了P[1],P[2],P[3]和P[4],看看我们应该怎么求出P[5]和P[6]。P[4]=2,那么P [5]显然等于P[4]+1,因为由P[4]可以知道,B[1,2]已经和B[3,4]相等了,现在又有B[3]=B[5],所以P[5]可以由P[4] 后面加一个字符得到。P[6]也等于P[5]+1吗?显然不是,因为B[ P[5]+1 ]<>B[6]。那么,我们要考虑“退一步”了。我们考虑P[6]是否有可能由P[5]的情况所包含的子串得到,即是否P[6]=P[ P[5] ]+1。这里想不通的话可以仔细看一下:

1 2 3 4 5 6 7
    B = a b a b a c b
    P = 0 0 1 2 3 ?

P[5]=3是因为B[1..3]和B[3..5]都是"aba";而P[3]=1则告诉我们,B[1]、B[3]和B[5]都是"a"。既然P[6]不能由P[5]得到,或许可以由P[3]得到(如果B[2]恰好和B[6]相等的话,P[6]就等于P[3]+1了)。显然,P[6]也不能通过P[3]得到,因为B[2]<>B[6]。事实上,这样一直推到P[1]也不行,最后,我们得到,P[6]=0。
    怎么这个预处理过程跟前面的KMP主程序这么像呢?其实,KMP的预处理本身就是一个B串“自我匹配”的过程。它的代码和上面的代码神似:

P[1]:=0;
j:=0;
for i:=2 to m do
begin
   while (j>0) and (B[j+1]<>B[i]) do j:=P[j];
   if B[j+1]=B[i] then j:=j+1;
   P[i]:=j;
end;

最后补充一点:由于KMP算法只预处理B串,因此这种算法很适合这样的问题:给定一个B串和一群不同的A串,问B是哪些A串的子串。

串匹配是一个很有研究价值的问题。事实上,我们还有后缀树,自动机等很多方法,这些算法都巧妙地运用了预处理,从而可以在线性的时间里解决字符串的匹配。我们以后来说。

附上java实现的方案:
public class KMPStr {
private static int[] getNext(String t) {
int[] next = new int[t.length()];
next[0] = -1;
int j = 0;
int k = -1; while (j < t.length() - 1) {
if (k == -1 || t.charAt(j) == t.charAt(k)) {
j++;
k++; next[j] = k;
} else {
k = next[k];
}
} for (int i : next) {
System.out.print(i + ": ");
}
System.out.print("\n"); return next;
} private static int kmpStrIndex(String s, String t, int[] next) {
int i = 0;
int j = 0; while (i < s.length() && j < t.length()) {
if (j == -1 || s.charAt(i) == t.charAt(j)) {
i++;
j++;
} else {
// i不变,j后退
j = next[j];
} if (j == t.length()) {
return i - j;
}
} return -1;
} public static void main(String[] args) {
String ss = " abaabcac";
KMPStr.getNext(ss);
String s = "ababcaabcacbab";
// 匹配串
String t = "abcaa";
// 第一个匹配的位置
// int position = strIndex(s, t); // System.out.println(position); int[] next = getNext(t);
int position = kmpStrIndex(s, t, next); System.out.println("kmp:" + position);
for (int i = 0; i < 100; i++) {
if (i == 10) {
break;
}
System.out.print("i=" + i + ";");
}
System.out.println();
System.out.println("执行到此步骤,说明跳出循环体继续执行");
} }

KMP详解之二的更多相关文章

  1. 【转】logback logback.xml常用配置详解(二)<appender>

    原创文章,转载请指明出处:http://aub.iteye.com/blog/1101260, 尊重他人即尊重自己 详细整理了logback常用配置, 不是官网手册的翻译版,而是使用总结,旨在更快更透 ...

  2. logback 常用配置详解(二) <appender>

    logback 常用配置详解(二) <appender> <appender>: <appender>是<configuration>的子节点,是负责写 ...

  3. OutputCache属性详解(二)一 Location

    目录 OutputCache概念学习 OutputCache属性详解(一) OutputCache属性详解(二) OutputCache属性详解(三) OutputCache属性详解(四)— SqlD ...

  4. 【three.js详解之二】渲染器篇

    [three.js详解之二]渲染器篇   本篇文章将详细讲解three.js中渲染器(renderer)的设置方法. three.js文档中渲染器的分支如下: Renderers CanvasRend ...

  5. 安卓集成发布详解(二)gradle

    转自:http://frank-zhu.github.io/android/2015/06/15/android-release_app_build_gradle/ 安卓集成发布详解(二) 15 Ju ...

  6. ViewPager 详解(二)---详解四大函数

    前言:上篇中我们讲解了如何快速实现了一个滑动页面,但问题在于,PageAdapter必须要重写的四个函数,它们都各有什么意义,在上节的函数内部为什么要这么实现,下面我们就结合Android的API说明 ...

  7. [顶]ORACLE PL/SQL编程详解之二:PL/SQL块结构和组成元素(为山九仞,岂一日之功)

    原文:[顶]ORACLE PL/SQL编程详解之二:PL/SQL块结构和组成元素(为山九仞,岂一日之功) [顶]ORACLE PL/SQL编程详解之二: PL/SQL块结构和组成元素(为山九仞,岂一日 ...

  8. iOS 开发之照片框架详解之二 —— PhotoKit 详解(下)

    本文链接:http://kayosite.com/ios-development-and-detail-of-photo-framework-part-three.html 这里接着前文<iOS ...

  9. iOS 开发之照片框架详解之二 —— PhotoKit 详解(上)

    转载自:http://kayosite.com/ios-development-and-detail-of-photo-framework-part-two.html 一. 概况 本文接着 iOS 开 ...

随机推荐

  1. 百度地图API的自动定位路线查询

    功能如下:打开时自动定位到当前位置(浏览器可能会屏蔽自动定位功能,建议手机查看,或直接打开地址:http://1.jingcode.applinzi.com/test2.html),输入目的地点击搜索 ...

  2. [资源]鸟哥的Linux私房菜

    http://vbird.dic.ksu.edu.tw/linux_basic/linux_basic.php 当为[ d ]则是目录,例如上表档名为『.gconf』的那一行: 当为[ - ]则是文件 ...

  3. quagga源码分析--路由信息处理zebra-rib

    对于各个协议生成的路由信息的处理属于quagga中非常重要的一个功能,如何在内核进行路由增加,更新,删除是一个复杂的过程. quagga在thread任务调度中加入了一种工作队列,work_queue ...

  4. MVC源码解析 - Http Pipeline 解析(上)

    IHttpHandler applicationInstance = HttpApplicationFactory.GetApplicationInstance(context); 上一篇说到了创建 ...

  5. 学习AngularJs:Directive指令用法(完整版)

    这篇文章主要学习AngularJs:Directive指令用法,内容很全面,感兴趣的小伙伴们可以参考一下   本教程使用AngularJs版本:1.5.3 AngularJs GitHub: http ...

  6. U3D简单得换装技术

    四个类完成,前提是 资源得名字配合 UI按钮点击响应类 using UnityEngine; using System.Collections; public class ButtonClickHan ...

  7. 数据结构之Binary Search Tree (Java)

    二叉查找树简介 二叉查找树(Binary Search Tree), 也成二叉搜索树.有序二叉树(ordered binary tree).排序二叉树(sorted binary tree), 是指一 ...

  8. VIP站长大会(北京站)常见问题解答

    功能支持问题 1. react能否和MIP结合使用,如果暂时不能以后是否有考虑?是否会和其他 js 框架(比如angular )结合? 目前暂无计划支持. 2. MIP页是否支持自定义cookie?实 ...

  9. 6.MyBaits的分页和缓存查询

    1. 创建javaweb项目MyBaits_Page_CaChe 2.在项目的WebRoot下的WEB-INF下的lib文件下加入jar文件 log4j-1.2.17.jar mybatis-3.2. ...

  10. Elasticsearch相关配置(二)

    一.关于elasticsearch的基本概念 term 索引词,在elasticsearch中索引词(term)是一个能够被索引的精确值.foo,Foo Foo几个单词是不相同的索引词.索引词(ter ...