[POJ 3311]Hie with the Pie——谈论TSP难题DP解决方法
主题连接:
id=3311">http://poj.org/problem?id=3311
题目大意:有n+1个点,给出点0~n的每两个点之间的距离,求这个图上TSP问题的最小解
思路:用二进制数来表示訪问过的城市集合。f[{S}][j]=已经訪问过的城市集合为S,訪问了j个城市。所需的最少花费。
这里提一下二进制数表示集合的方法(这里最好还是设集合中最多有n个元素):
假设集合S中最多会出现n个元素,则用长度为n的二进制数来表示集合S,每一位代表一个元素。该位为0表示该元素在集合S中不存在,为1表示该元素在集合S中存在
位数 4 3 2 1
S 1 0 1 1
这个集合S里有元素1、2、4
以下是二进制数表示几种集合运算的方法
1、集合S的全集U=(1<<n)-1
2、检查集合S中是否含元素i S&(1<<(i-1)) (返回0表示不存在。返回1表示存在)
3、从集合S中去除元素i S^(1<<(i-1))
以下是本题的思路:
首先对整个图跑一次Floyd多源最短路。得到两两点之间的最短距离,然后用DP求解,f[{S}][j]=已经訪问过的城市集合为S。訪问了j个城市,所需的最少花费。
f[S][i]=min{f[S-{j}][j]+dist[j][i]}
最后得到的答案ans=min(f[全集][i]+dist[i][0])
代码:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm> #define MAXN 15
#define MAXM 1<<15
#define INF 0x3f3f3f3f using namespace std; int f[MAXM][MAXN]; //f[{S}][j]=已经訪问过的城市集合为S。訪问了j个城市,所需的最少花费
int dist[MAXN][MAXN]; //点与点之间的距离
int n; int min(int a,int b)
{
if(a<b) return a;
return b;
} void Floyd()
{
for(int k=0;k<=n;k++)
for(int i=0;i<=n;i++)
for(int j=0;j<=n;j++)
dist[i][j]=min(dist[i][j],dist[i][k]+dist[k][j]);
} int TSP() //DP求TSP
{
memset(f,0x7f,sizeof(f));
for(int s=0;s<(1<<n);s++) //枚举訪问城市集合S,全集为(1<<n)-1
for(int i=1;i<=n;i++) //枚举近期訪问过的城市i
if(s&(1<<(i-1))) //city(i)∈S
{
if(s==(1<<(i-1))) //{city(i)}==S
f[s][i]=dist[0][i];
else
{
for(int j=1;j<=n;j++) //枚举上一次訪问的城市j
if((s&(1<<(j-1)))&&i!=j) //城市j不和i同样
f[s][i]=min(f[s][i],f[s^(1<<(i-1))][j]+dist[j][i]); //Cs {city(J)}=s^(1<<(i-1))
}
}
int ans=INF;
for(int i=1;i<=n;i++)
ans=min(ans,f[(1<<n)-1][i]+dist[i][0]);
return ans;
} int main()
{
while(scanf("%d",&n)&&n)
{
memset(dist,0,sizeof(dist));
for(int i=0;i<=n;i++)
for(int j=0;j<=n;j++)
scanf("%d",&dist[i][j]);
Floyd();
printf("%d\n",TSP());
}
return 0;
}
版权声明:本文博主原创文章,博客,未经同意不得转载。
[POJ 3311]Hie with the Pie——谈论TSP难题DP解决方法的更多相关文章
- POJ 3311 Hie with the Pie:TSP(旅行商)【节点可多次经过】
题目链接:http://poj.org/problem?id=3311 题意: 你在0号点(pizza店),要往1到n号节点送pizza. 每个节点可以重复经过. 给你一个(n+1)*(n+1)的邻接 ...
- poj 3311 Hie with the Pie (状压dp) (Tsp问题)
这道题就是Tsp问题,稍微加了些改变 注意以下问题 (1)每个点可以经过多次,这里就可以用弗洛伊德初始化最短距离 (2)在循环中集合可以用S表示更清晰一些 (3)第一维为状态,第二维为在哪个点,不要写 ...
- POJ 3311 Hie with the Pie(状压DP + Floyd)
题目链接:http://poj.org/problem?id=3311 Description The Pizazz Pizzeria prides itself in delivering pizz ...
- POJ 3311 Hie with the Pie floyd+状压DP
链接:http://poj.org/problem?id=3311 题意:有N个地点和一个出发点(N<=10),给出全部地点两两之间的距离,问从出发点出发,走遍全部地点再回到出发点的最短距离是多 ...
- POJ 3311 Hie with the Pie(Floyd+状态压缩DP)
题是看了这位的博客之后理解的,只不过我是又加了点简单的注释. 链接:http://blog.csdn.net/chinaczy/article/details/5890768 我还加了一些注释代码,对 ...
- poj 3311 Hie with the Pie(状态压缩dp)
Description The Pizazz Pizzeria prides itself or more (up to ) orders to be processed before he star ...
- POJ 3311 Hie with the Pie (状压DP)
题意: 每个点都可以走多次的TSP问题:有n个点(n<=11),从点1出发,经过其他所有点至少1次,并回到原点1,使得路程最短是多少? 思路: 同HDU 5418 VICTOR AND WORL ...
- POJ 3311 Hie with the Pie 【状压DP】
Description The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possi ...
- poj 3311 Hie with the Pie
floyd,旅游问题每个点都要到,可重复,最后回来,dp http://poj.org/problem?id=3311 Hie with the Pie Time Limit: 2000MS Me ...
随机推荐
- Java代码检查工具
FindBugs:不注重样式和格式,重视真正的缺陷和潜在的性能问题,,基于Bug Patterns,在不运行的情况下检查字节码代码质量. Jalopy:Java源代码格式化工具,可自定义规则. PMD ...
- poj 3225 间隙(横截面和填充操作)
http://poj.org/problem?id=3225 一道题又做了一天. .这道题对我来说起初有N多难点. 1:区间的开闭怎样解决. . 2:如何把区间的交并补.对称差转化为对线段树的操作. ...
- 使用bootbox.js(二级务必提交书面和数字到数字中国)
页面文件 <#-- 页头 --> <#assign currNav = "deposit"> <#assign title="网校充值&qu ...
- 文章之间的基本总结:Activity生命周期
孔子:温故而知新.它可以作为一个教师.<论语> 同样的学习技巧.对于技术文件或书籍的经典技术,期待再次看到它完全掌握,这基本上是不可能的,所以,我们常常回来几次,然后仔细研究,为了理解作者 ...
- 作为一个新人,如何学习嵌入式Linux?
作为一个新人.如何学习嵌入式Linux?我一直在问太多次,特写文章来回答这个问题. 在学习嵌入式Linux之前.肯定要有C语言基础.汇编基础有没有无所谓(就那么几条汇编指令,用到了一看就会).C语言要 ...
- 使用Bootstrap 他写道网站
新发现vdceye有些难看的网站,为了找到一个bootstrap工具,我一次又一次地写信给网站 这个工具是很容易使用 http://vdceye.com/ 版权声明:本文博客原创文章,博客,未经同意, ...
- MongoDB日常保养
它引入了程序来进行维护管理工具 MongoDB的日常维护包含使用配置文件,设置訪问控制.Shell交互,系统监控和管理,数据库日常备份和恢复 启动和停止MongoDB 启动后能够通过数据库的IP加po ...
- 采用curl库
Windows通过使用curl库: 到http://curl.haxx.se/下了个curl的源代码下来,源代码是用VC6编译的,我在VS2005下又一次进行编译.竟然仅仅有一个警告. cUrl的实现 ...
- 复制(5)——事务复制中的发布者(Publisher)
发布者是所有被复制(replicated)的数据的集合.每个发布者可以有多个发布(publication),每个发布项包含多个项目(articles),但是这些发布必须处于一个单一的数据库中,而每个项 ...
- File类基本操作之OutputStream字节输出流
贴代码了,已经測试,可正常编译 package org.mark.streamRW; import java.io.File; import java.io.FileOutputStream; imp ...