UVA - 10014

Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu

id=19100" style="color:blue">Submit Status

Description

id=19100" style="color:blue">The Problem

There is a sequence of n+2 elements a0, a1,…, an+1 (n <= 3000; -1000 <=  ai 1000). It is known that ai = (ai–1 + ai+1)/2 – ci   for each i=1, 2, ...,
n. You are given a0, an+1, c1, ... , cn. Write a program which calculates a1.

The Input

id=19100" style="color:blue">The first line is the number of test cases, followed by a blank line.

id=19100" style="color:blue">For each test case, the first line of an input file contains an integer n. The next two lines consist of numbers
a0 and an+1 each having two digits after decimal point, and the next n lines contain numbers ci (also with two digits after decimal point), one number per line.

Each test case will be separated by a single line.

The Output

For each test case, the output file should contain a1 in the same format as a0 and an+1.

id=19100" style="color:blue">Print a blank line between the outputs for two consecutive test cases.

Sample Input

1

1
50.50
25.50
10.15

Sample Output

27.85

Source

Root :: Prominent Problemsetters :: Alex Gevak

Root :: Competitive Programming 3: The New Lower Bound of Programming Contests (Steven & Felix Halim) :: Mathematics :: Ad Hoc Mathematics Problems :: Finding
Pattern or Formula, easier


Root :: Competitive Programming 2: This increases the lower bound of Programming Contests. Again (Steven & Felix Halim) :: Mathematics :: Ad Hoc Mathematics Problems :: 

option=com_onlinejudge&Itemid=8&category=395" style="color:blue">Finding
Pattern or Formula


Root :: AOAPC I: Beginning Algorithm Contests (Rujia Liu) :: Volume 1. Elementary Problem Solving :: Maths - Misc

非常经典的数学推导题!!



首先。依据题意有a[i] = (a[i-1] + a[i+1]) / 2 - c[i];

变换可得a[i+1] = (a[i] + c[i]) * 2 - a[i-1];

则a[n+1] = (a[n] + c[n]) * 2 -a[n-1]

                = [ ( a[n-1] + c[n-1] ) * 2 - a[n-2] + c[n]  ] * 2 - a[ n-1]

= 3*a[n-1] - 2*a[n-2] + 4*c[n-1] + 2*c[n]

= 4*a[n-2] - 3*a[n-3] + 6*c[n-2] + 4*c[n-1] + 2*c[n]

= 5*a[n-3] -
4*a[n-4] +
8*c[n-3] + 6*c[n-2] + 4*c[n-1] + 2*c[n]

....

= (n+1)*a[1] - n *a[0] + (n+1 - i) * 2 * c[i] + ....



则 a[1] * (n+1)= a[n+1] + n*a[0] - (n+1-i)*2*c[i] + .....

手敲果然慢......

AC代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <string>
using namespace std; const int maxn = 3005; int main()
{
int cas;
scanf("%d", &cas);
while(cas--)
{
int n;
scanf("%d", &n);
double a0, am, c[maxn];
scanf("%lf %lf", &a0, &am);
double ans = a0*n + am;
for(int i=1; i<=n; i++)
{
scanf("%lf", &c[i]);
ans -= (n+1-i)*c[i]*2;
}
printf("%.2lf\n", ans/(n+1));
if(cas!=0)printf("\n");
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

UVA - 10014 - Simple calculations (经典的数学推导题!!)的更多相关文章

  1. uva 10014 Simple calculations

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  2. UVA 11300 Spreading the Wealth (数学推导 中位数)

    Spreading the Wealth Problem A Communist regime is trying to redistribute wealth in a village. They ...

  3. GCD - Extreme (II) UVA - 11426 欧拉函数_数学推导

    Code: #include<cstdio> using namespace std; const int maxn=4000005; const int R=4000002; const ...

  4. hdu 5430 Reflect (数学推导题)

    Problem Description We send a light from one point on a mirror material circle,it reflects N times a ...

  5. leetcode 343. Integer Break(dp或数学推导)

    Given a positive integer n, break it into the sum of at least two positive integers and maximize the ...

  6. 借One-Class-SVM回顾SMO在SVM中的数学推导--记录毕业论文5

    上篇记录了一些决策树算法,这篇是借OC-SVM填回SMO在SVM中的数学推导这个坑. 参考文献: http://research.microsoft.com/pubs/69644/tr-98-14.p ...

  7. 【POJ】【2601】Simple calculations

    推公式/二分法 好题! 题解:http://blog.csdn.net/zck921031/article/details/7690288 这题明显是一个方程组……可以推公式推出来…… 然而这太繁琐了 ...

  8. 关于不同进制数之间转换的数学推导【Written By KillerLegend】

    关于不同进制数之间转换的数学推导 涉及范围:正整数范围内二进制(Binary),八进制(Octonary),十进制(Decimal),十六进制(hexadecimal)之间的转换 数的进制有多种,比如 ...

  9. uva 12253 - Simple Encryption(dfs)

    题目链接:uva 12253 - Simple Encryption 题目大意:给定K1.求一个12位的K2,使得KK21=K2%1012 解题思路:按位枚举,不且借用用高速幂取模推断结果. #inc ...

随机推荐

  1. 查看linux系统版本号命令

    一.查看内核版本号命令: 1) [root@SOR_SYS ~]# cat /proc/version Linux version 2.6.18-238.el5 (mockbuild@x86-012. ...

  2. 合作编辑室计费系统(一)-SVN常见错误

    联合室已完成,在不到一个月的时间,我们的团队:嗤.陈琛.我.这段时间都挺辛苦的.从心里这次合作,真的让我们学习了非常多,学会了接纳和承担. 在我们開始合作机房的时候,社和师哥就给我们做了功课,说你们好 ...

  3. C++使用对象指针

    //定义结构 Box.h: #ifndef BOX_H #define BOX_H struct Box{ double length; double width; double height; do ...

  4. STL内存分配

    STL内存创建 Owed by: 春夜喜雨 http://blog.csdn.net/chunyexiyu  转载请标明来源 1.      Stl内存创建基类模板__malloc_alloc_tem ...

  5. Android利用网络编程HttpClient批量上传(一个)

    请尊重他人的劳动成果.转载请注明出处:Android网络编程之使用HttpClient批量上传文件 我曾在<Android网络编程之使用HTTP訪问网络资源>一文中介绍过HttpCient ...

  6. mysql 删除重复数据sql声明

    CREATE TABLE tmp AS SELECT id FROM get_review_url WHERE (no,title,name,content) IN (SELECT no,title, ...

  7. IIS7和IIS7.5备份和还原的方法

    windows2008的iis配置备份和iis6不同,在iis7中没有了6原来的保存配置xml的选项,而采用的是dos命令来进行iis7的备份.以下是win2008上iis7备份的方法. 首先打开CM ...

  8. 【翻译】Ext JS最新技巧——2014-10-30

    原文:Top Support Tips Greg Barry:Ext JS 5的ExtraParams Ext JS 4同意用户直接将extraParams加入到一个链接,相似例如以下代码: Ext. ...

  9. 首先看K一个难看的数字

    把仅仅包括质因子2.3和5的数称作丑数(Ugly Number),比如:2,3,4,5,6,8,9,10,12,15,等,习惯上我们把1当做是第一个丑数. 写一个高效算法,返回第n个丑数. impor ...

  10. iOS开发无第三方控件的援助达到的效果侧边栏

    最近的研究iOS程序侧边栏.渐渐的发现iOS该方案还开始采取风侧边栏格该,QQ,今日头条,Path(Path运营商最早的侧边栏app该,效果说成是Path效果),所以就研究了下. 然后发现Git Hu ...