UVA - 10014 - Simple calculations (经典的数学推导题!!)
UVA - 10014
| Time Limit: 3000MS | Memory Limit: Unknown | 64bit IO Format: %lld & %llu |
id=19100" style="color:blue">Submit
Description
id=19100" style="color:blue">The Problem
There is a sequence of n+2 elements a0, a1,…, an+1 (n <= 3000; -1000 <= ai 1000). It is known that ai = (ai–1 + ai+1)/2 – ci for each i=1, 2, ...,
n. You are given a0, an+1, c1, ... , cn. Write a program which calculates a1.
The Input
id=19100" style="color:blue">The first line is the number of test cases, followed by a blank line.
Each test case will be separated by a single line.
The Output
For each test case, the output file should contain a1 in the same format as a0 and an+1.
id=19100" style="color:blue">Print a blank line between the outputs for two consecutive test cases.
Sample Input
1
1
50.50
25.50
10.15
Sample Output
27.85
Source
Root :: Competitive Programming 3: The New Lower Bound of Programming Contests (Steven & Felix Halim) :: Mathematics :: Ad Hoc Mathematics Problems :: Finding
Pattern or Formula, easier
Root :: Competitive Programming 2: This increases the lower bound of Programming Contests. Again (Steven & Felix Halim) :: Mathematics :: Ad Hoc Mathematics Problems ::
option=com_onlinejudge&Itemid=8&category=395" style="color:blue">Finding
Pattern or Formula
Root :: AOAPC I: Beginning Algorithm Contests (Rujia Liu) :: Volume 1. Elementary Problem Solving :: Maths - Misc
非常经典的数学推导题!!
!
首先。依据题意有a[i] = (a[i-1] + a[i+1]) / 2 - c[i];
变换可得a[i+1] = (a[i] + c[i]) * 2 - a[i-1];
则a[n+1] = (a[n] + c[n]) * 2 -a[n-1]
= [ ( a[n-1] + c[n-1] ) * 2 - a[n-2] + c[n] ] * 2 - a[ n-1]
= 3*a[n-1] - 2*a[n-2] + 4*c[n-1] + 2*c[n]
= 4*a[n-2] - 3*a[n-3] + 6*c[n-2] + 4*c[n-1] + 2*c[n]
= 5*a[n-3] -
4*a[n-4] +
8*c[n-3] + 6*c[n-2] + 4*c[n-1] + 2*c[n]
....
= (n+1)*a[1] - n *a[0] + (n+1 - i) * 2 * c[i] + ....
则 a[1] * (n+1)= a[n+1] + n*a[0] - (n+1-i)*2*c[i] + .....
手敲果然慢......
AC代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <string>
using namespace std; const int maxn = 3005; int main()
{
int cas;
scanf("%d", &cas);
while(cas--)
{
int n;
scanf("%d", &n);
double a0, am, c[maxn];
scanf("%lf %lf", &a0, &am);
double ans = a0*n + am;
for(int i=1; i<=n; i++)
{
scanf("%lf", &c[i]);
ans -= (n+1-i)*c[i]*2;
}
printf("%.2lf\n", ans/(n+1));
if(cas!=0)printf("\n");
}
return 0;
}
版权声明:本文博客原创文章,博客,未经同意,不得转载。
UVA - 10014 - Simple calculations (经典的数学推导题!!)的更多相关文章
- uva 10014 Simple calculations
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11300 Spreading the Wealth (数学推导 中位数)
Spreading the Wealth Problem A Communist regime is trying to redistribute wealth in a village. They ...
- GCD - Extreme (II) UVA - 11426 欧拉函数_数学推导
Code: #include<cstdio> using namespace std; const int maxn=4000005; const int R=4000002; const ...
- hdu 5430 Reflect (数学推导题)
Problem Description We send a light from one point on a mirror material circle,it reflects N times a ...
- leetcode 343. Integer Break(dp或数学推导)
Given a positive integer n, break it into the sum of at least two positive integers and maximize the ...
- 借One-Class-SVM回顾SMO在SVM中的数学推导--记录毕业论文5
上篇记录了一些决策树算法,这篇是借OC-SVM填回SMO在SVM中的数学推导这个坑. 参考文献: http://research.microsoft.com/pubs/69644/tr-98-14.p ...
- 【POJ】【2601】Simple calculations
推公式/二分法 好题! 题解:http://blog.csdn.net/zck921031/article/details/7690288 这题明显是一个方程组……可以推公式推出来…… 然而这太繁琐了 ...
- 关于不同进制数之间转换的数学推导【Written By KillerLegend】
关于不同进制数之间转换的数学推导 涉及范围:正整数范围内二进制(Binary),八进制(Octonary),十进制(Decimal),十六进制(hexadecimal)之间的转换 数的进制有多种,比如 ...
- uva 12253 - Simple Encryption(dfs)
题目链接:uva 12253 - Simple Encryption 题目大意:给定K1.求一个12位的K2,使得KK21=K2%1012 解题思路:按位枚举,不且借用用高速幂取模推断结果. #inc ...
随机推荐
- 查看linux系统版本号命令
一.查看内核版本号命令: 1) [root@SOR_SYS ~]# cat /proc/version Linux version 2.6.18-238.el5 (mockbuild@x86-012. ...
- 怎样设制 select 不可编辑 仅仅读
1. <select style="width:195px" name="role" id="role" onfocus=" ...
- CloudFoundry 中的GoRouter性能測试
之前一直感觉CloudFoundry的GoRouter的性能不靠谱,或者我们的CloudFoundry 部署架构存在问题,想着进行一些压力測试,可是一直苦于没有压力測试的工具.上一周,部门须要出一个測 ...
- Chrome 控制台不完全指南(转)
Chrome的开发者工具已经强大到没朋友的地步了,特别是其功能丰富界面友好的console,使用得当可以有如下功效: 更高「逼格」更快「开发调试」更强「进阶级的Frontender」 Bug无处遁形「 ...
- 【YouVersion】 The Bible 圣经App
[YouVersion] The Bible 圣经 App 今天向大家郑重推荐一款非常棒的圣经App : <The Bible> YouVersion 团队开发的全球下载量和安装数目第 ...
- ASP.NET自定义控件组件开发 第二章 继承WebControl的自定义控件
原文:ASP.NET自定义控件组件开发 第二章 继承WebControl的自定义控件 第二章 继承于WebControl的自定义控件 到现在为止,我已经写了三篇关于自定义控件开发的文章,很感谢大家的支 ...
- 【剑指offer】面试题39:深度二叉树
def TreeDepth1(root): if None == root: return 0 if None == root.left and None == root.right: return ...
- Integer比较
/** * @time 2014-06-25 * @author Cao HaiCheng * */ public class demo { public static void main(Strin ...
- WWDC 2014 Session 205/217 Extension 注意事项
基于阅读下面的内容205和217的PDF做笔记.没有深入研究. 205 Creating Extensions for iOS and OS X, Part 1 217 Creating Extens ...
- Android系统关机或几种方式重启
---------------------------------------------------------------------------------------------------- ...