Anaconda,nvidia-docker,Linux三种方式安装caffe

1.Anaconda安装caffe

  1.首先安装anaconda

  2.创建虚拟环境(python2.7)  

conda create -n caffe python=2.7 anaconda

  3.安装caffe

# 然后下面二选一即可,安装caffe
conda install -c conda-forge caffe
conda install -c conda-forge/label/broken caffe

  4.注意:

# 如果出现numpy导入错误,是因为 conda-forge中的numpy版本过低,可再输入下面命令
pip install numpy --upgrade

  5.测试

# 测试是否成功
source activate caffe
python
import caffe

2.nvidia-docker安装caffe-gpu

注意:docker仅支持cpu
nvidia-docker支持GPU

  1.安装nvidia-docker

wget -P /tmp https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker_1.0.1-1_amd64.deb
sudo dpkg -i /tmp/nvidia-docker*.deb
# 测试
nvidia-docker run --rm nvidia/cuda nvidia-smi

  2.拉取caffe-gpu镜像

nvidia-docker pull bvlc/caffe:gpu

  3.启动一个容器

nvidia-docker run --rm -ti <镜像名字>
docker attach <容器id> # 已打开的容器
# 退出容器 ctrl + d (容器不运行)或者ctrl q+p(容器后台运行)
# 进入未运行的容器
docker ps -a # 查看容器id
docker start <id>
docker attach <id>
# 容器改名
dockers rename 原id 新id

  4.更新源

apt uptate

  5.测试

#caffe安装目录默认在/opt/caffe,若想支持opencv,多gpu,请自行编译,可参看第三种方式编译安装caffe
python
import caffe

3.Linux编译caffe,并支持多GPU

  1.linux安装git

# Centos
yum install git
# Ubuntu
sudo apt-get install git
git clone https://github.com/BVLC/caffe.git

  2.编译前的Makefile.config配置

# 新建Makefile.config
mv Makefile.config.example Makefile.config

注意:

 ## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := # CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := # uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV :=
# USE_LEVELDB :=
# USE_LMDB := # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := # Uncomment if you're using OpenCV 3
OPENCV_VERSION := # To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr # CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61 # BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2. \
/usr/lib/python2./dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python2. \
# $(ANACONDA_HOME)/lib/python2./site-packages/numpy/core/include # Uncomment to use Python (default is Python )
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3./dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := # Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
USE_NCCL := # Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := # N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := # The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := # enable pretty build (comment to see full commands)
Q ?= @

  1.第5行USE_CUDNN := 1(安装和cuda匹配的cudnn)

  2.第21行 OPENCV_VERSION := 3(安装opencv)

sudo apt install git
git clone https://github.com/jayrambhia/Install-OpenCV
cd Install-OpenCV/Ubuntu/
chmod +x *
./opencv_latest.sh make -j8 && make pycaffe

  3.第28行CUDA_DIR := /usr/local/cuda(安装cuda的目录)

  4.第49行BLAS := atlas

  5.第67,68行

PYTHON_INCLUDE := /usr/include/python2. \
/usr/lib/python2./dist-packages/numpy/core/include

  6.第93,94行

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial

  7.第102行USE_NCCL := 1(支持多gpu)

git clone https://github.com/NVIDIA/nccl.git
cd nccl
sudo make install
sudo gedit ~/.bashrc
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/home/XXX/nccl/build/lib/" #XXX为用户名
source .bashrc 使用多个gpu
我们在使用caffe的工具训练网络时,在语句的最后加上以下内容即可 -gpu all #运行所有的gpu
-gpu , #运行1号2号gpu

  3.开始编译

sudo make all
sudo make test
sudo make pycaffe
sudo make runtest

  4.测试

python
import caffe

  

  

  

      

最全caffe安装踩坑记录(Anaconda,nvidia-docker,Linux编译)的更多相关文章

  1. Linux mint 安装踩坑记录

    记得之前电脑上的那个Ubuntu是去年寒假的时候安装的,算下来自己用Linux也快一年了.虽然在去年暑假的时候我也曾经想过要把Ubuntu升级到18.04可是当时安装了几次都没有成功,自己也就放弃了. ...

  2. opencv c++安装踩坑记录 file cannot create directory: /usr/local/include/opencv2. Maybe need administrative privileges

    前言 最近深度学习Ultra-Fast-Lane-Detection/INSTALL.md at master · cfzd/Ultra-Fast-Lane-Detection (github.com ...

  3. Ubuntu18.04 显卡驱动+Cuda安装踩坑记录 以及Ubuntu虚拟内存的添加

    前几天买了张亮机卡,终于把主显卡成功直连到Unraid OS的虚拟机上了.然后就开始安装ubuntu系统开始配置环境,遇到了不少坑,特此记录. gcc版本问题 在安装显卡驱动的时候,不要修改gcc版本 ...

  4. Win10自带Ubuntu子系统下Mysql安装踩坑记录

    linux系统为win10自带Ubuntu子系统 错误的安装过程 我按照一般的方法安装mysql,安装步骤如下 1.升级源 $ sudo apt-get update 2.安装mysql $ sudo ...

  5. docker安装踩坑记录

    .docker安装包安装很顺利, yum安装安装源在官网或镜像网站下载, fedora/centos分别下载不同的, 在/etc/yum.repos.d/doccker-ce.repo, 把网址改为镜 ...

  6. pyltp安装踩坑记录

    LTP(Language Technology Platform)由哈工大社会计算与信息检索研究中心开发,提供包括中文分词.词性标注.命名实体识别.依存句法分析.语义角色标注等丰富. 高效.精准的自然 ...

  7. VNPY - windows 安装踩坑记录

    twisted requires PyHamcrest>=, which is not ins grin requires argparse>=1.1, which is not inst ...

  8. Manjaro (KDE)安装踩坑记录

    1.如果双显卡无法安装系统可以进如BIOS屏蔽显卡后进入安装 2.如果安装kde版本后容易冻屏.死机,可以尝试安装闭源驱动 3.如果出现resolving time out 10000ms 这样的问题 ...

  9. 全文搜索引擎 Elasticsearch 安装踩坑记录

    一.安装 Elastic 需要 Java 8 环境.如果你的机器还没安装 Java 安装完 Java,就可以跟着官方文档安装 Elastic.直接下载压缩包比较简单. $ wget https://a ...

随机推荐

  1. Android 动画基础——视图动画(View Animation)

    本篇讲android 3.0之前被广泛的动画框架——ViewAnimation. 目录 我将分为六部分来讲: 概述 Alpha透明动画 Rotate旋转动画 Translate位移动画 Scale放缩 ...

  2. Android自定义View入门(一)

    最近在写一个关于音乐播放的应用,写到播放界面UI时,就想自己实现的一个播放界面.那么如何实现自定义View呢?通过查看他人博客和Android官方开发文档,初步了解了一些浅显的内容.在此记录,已供需要 ...

  3. Color gradient in Delphi FireMonkey

    Introduction to color gradients in Delphi FireMonkey. Video This video covers the basics of color gr ...

  4. python中的基本数据类型之 int bool str

    一.基本数据类型 1. int  ==>  整数.主要用来进行数学运算. 2.str  ==>  字符串.可以保存少量的数据,并进行相应的操作. 3.bool  =>  布尔值.判断 ...

  5. 在无界面centos7上部署jdk和tomcat

    1.安装xshell6 2.创建服务器连接,输入用户名和密码 3.输入 sudo su -root 获取root权限 4.输入 cd /usr/local 进入local文件夹 5.输入 wget - ...

  6. Spring Boot入门篇(基于Spring Boot 2.0系列)

    1:概述: Spring Boot是用来简化Spring应用的初始化开发过程. 2:特性: 创建独立的应用(jar|war形式); 需要用到spring-boot-maven-plugin插件 直接嵌 ...

  7. hadoop之hive&hbase互操作

    大家都知道,hive的SQL操作非常方便,但是查询过程中需要启动MapReduce,无法做到实时响应. hbase是hadoop家族中的分布式数据库,与传统关系数据库不同,它底层采用列存储格式,扩展性 ...

  8. vuejs切换导航条高亮路由高亮做法

    我的GitHub前端经验总结,喜欢的话请点star✨✨Thanks.:https://github.com/liangfengbo/frontend-develop vuejs导航条高亮我的做法: 用 ...

  9. [Java] 父类和子类拥有同名的成员变量(fields)的情况

    首先,需要明确的是,无论是通过casting,还是通过将子类对象的reference赋值给父类变量,都无法改变该reference所指对象的真实类型.但当该reference的类型是父类时,将无法调用 ...

  10. 程序员修仙之路--优雅快速的统计千万级别uv(留言送书)

    菜菜,咱们网站现在有多少PV和UV了? Y总,咱们没有统计pv和uv的系统,预估大约有一千万uv吧 写一个统计uv和pv的系统吧 网上有现成的,直接接入一个不行吗? 别人的不太放心,毕竟自己写的,自己 ...