【[POI2012]TOU-Tour de Byteotia】

洛谷P3535

https://www.luogu.org/problemnew/show/P3535

JDOJ 2193旅游景点(同类题目)

https://neooj.com/oldoj/problem.php?id=2193

知识点:并查集判环

ps:首先声明一下,这题我只得了20分,但是检查了好多遍代码发现没有问题,看了大佬的题解发现他也得了20分,那就是洛谷数据点有问题了(数据范围啥的都没给还想过?)

所以大家不要纠结分数,把这个东西弄好了才是最重要的。

并查集有连通性,其很重要的一个用处就是判环,这个判环用法不仅在一些并查集题中很常见,并且在kruskal算法做MST的时候也是必会用法。

其原理很简单,如果一个点的父亲节点和另一个点的父亲节点是相同的,那么就可以判定出现了一个环。

然后针对于本题,正解思路如下:

不难想到,如果两个点都>k的话,这个边就没有可能被删除。 所以我们只需要先把x,y都>k的边放进并查集,然后再枚举其他<=k的边,如果发现x,y根节点相同,那就累加ans,如果没有的话就不需要删除,加到并查集里。

TALK LESS , LET ME SHOW YOU

#include<cstdio>
#define N 100010
using namespace std;
int fa[N],x[N<<],y[N<<];
int n,m,k,ans;
int find(int x)
{
if(fa[x]==x)return x;
return fa[x]=find(fa[x]);
}
void unionn(int x,int y)
{
int fx=find(x);
int fy=find(y);
if(fx!=fy)
fa[fx]=fy;
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=n;i++)
fa[i]=i;
for(int i=;i<=m;i++)
{
scanf("%d%d",&x[i],&y[i]);
if(x[i]>k && y[i]>k)
unionn(x[i],y[i]);
}
for(int i=;i<=m;i++)
{
if(x[i]<=k || y[i]<=k)
{
if(find(x[i])==find(y[i]))
ans++;
else
unionn(x[i],y[i]);
}
}
printf("%d",ans);
return ;
}

【[POI2012]TOU-Tour de Byteotia】的更多相关文章

  1. 【BZOJ3060】[Poi2012]Tour de Byteotia 并查集

    [BZOJ3060][Poi2012]Tour de Byteotia Description 给定一个n个点m条边的无向图,问最少删掉多少条边能使得编号小于等于k的点都不在环上. Input     ...

  2. Bzoj3060 [Poi2012]Tour de Byteotia

    3060: [Poi2012]Tour de Byteotia Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 251  Solved: 161 Des ...

  3. bzoj 3060[Poi2012]Tour de Byteotia 贪心+生成树

    Description 给定一个n个点m条边的无向图,问最少删掉多少条边能使得编号小于等于k的点都不在环上. Analysis 包含关键点的环中 包含从关键点连出的两条边 考虑我们删边删哪些边更优 根 ...

  4. BZOJ 3060: [Poi2012]Tour de Byteotia 并查集

    前 $k$ 个节点形成的结构必定是森林,而 $[k+1,r]$ 之间肯定是都连上,而剩下的一个在 $[1,k],$一个在 $[k+1,r]$ 的节点就能连多少连多少即可. Code: #include ...

  5. [bzoj3060][Poi2012]Tour de Byteotia_并查集

    [Poi2012]Tour de Byteotia 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3060 题解: 这类题有一个套路,就是 ...

  6. [POI2012]Tour de Bajtocja

    [POI2012]Tour de Bajtocja 题目大意: 给定一个\(n(n\le10^6)\)个点\(m(m\le2\times10^6)\)条边的无向图,问最少删掉多少条边能使得编号小于等于 ...

  7. 【Lucene3.6.2入门系列】第03节_简述Lucene中常见的搜索功能

    package com.jadyer.lucene; import java.io.File; import java.io.IOException; import java.text.SimpleD ...

  8. 【Xamarin开发 Android 系列 4】 Android 基础知识

    原文:[Xamarin开发 Android 系列 4] Android 基础知识 什么是Android? Android一词的本义指“机器人”,同时也是Google于2007年11月5日宣布的基于Li ...

  9. HTML5实现全屏API【进入和退出全屏】

    现在主流浏览器基本上实现了全屏效果,但是不同浏览器实现不一样: [进入和退出全屏] // Webkit (works in Safari5.1 and Chrome 15)element.webkit ...

随机推荐

  1. Day7 - Python基础7 面向对象

    本节内容: 1:概述 2:类.对象和方法的创建 3:面向对象三大特性,封装.继承和多态. 4:面向对象中高级篇:类成员:字段.方法.属性 5:类成员的修饰符 6:类的特殊成员 1.概述 面向过程:根据 ...

  2. USACO Max Flow

    洛谷 P3128 [USACO15DEC]最大流Max Flow 洛谷传送门 JDOJ 3027: USACO 2015 Dec Platinum 1.Max Flow JDOJ传送门 Descrip ...

  3. <Array> 309 (高)334

    309. Best Time to Buy and Sell Stock with Cooldown class Solution { public int maxProfit(int[] price ...

  4. # Spring 练习ioc 、aop

    Spring 练习 通过学习spring的基础知识,了解了Spring为了降低Java开发的复杂性,采取了以下4种关键策略: 基于POJO的轻量级和最小侵入性编程: 通过依赖注入和面向接口实现松耦合: ...

  5. 趣谈Linux操作系统学习笔记:第二十八讲

    一.引子 磁盘→盘片→磁道→扇区(每个 512 字节) ext* 定义文件系统的格式 二.inode 与块的存储 1.块 2.不用给他分配一块连续的空间 我们可以分散成一个个小块进行存放 1.优点 2 ...

  6. C#位运算实际作用之操作整型某一位

    1.前言 前几天写了两篇关于c#位运算的文章 c#位运算基本概念与计算过程 C#位运算实际运用 在文中也提到了位运算的实际作用之一就是合并整型,当时引用了一个问题: C# 用两个short,一个int ...

  7. 干货 | 国内互联网公司是如何做微服务实践的?(附PPT下载)

    微服务的概念最早由Martin Fowler与James Lewis于2014年共同提出,并随着Netflix最佳实践的发布而为业界所知.如今,在国内有了大量的微服务实践案例,5月18日,网易云联合云 ...

  8. 使用DataV制作的一个数据报表

    之前接到一个做数据报表的需求,当时准备使用echarts自己画.后来考虑时间来不及,着急要,再加上一直在使用阿里云的产品,就在阿里云上个找了找数据大屏的服务.于是很快做出了一款. 然后看到 https ...

  9. wpf 当DataGrid列模版是ComboBox时,显示信息

    ​ 实际工作中,有时DataGrid控件某一列显示数据是从Enum集合里面选择出来的,那这时候设置列模版为ComboBox就能满足需求.而关于显示的实际内容,直接是Enum的string()返回值可能 ...

  10. 接口的 COM 组件调用 QueryInterface 因以下错误而失败: 库没有注册。

    这个问题原因是因为安装了高版本的office然后卸载掉,又安装了低版本的office导致的. 博主是 office2016卸载后,安装了office2013. EXCEL报错信息为: 无法将类型为“M ...