随着人口红利的慢慢削减,互联网产品的厮杀愈加激烈,大家开始看好下沉市场的潜力,拼多多,趣头条等厂商通过拉新奖励,购物优惠等政策率先抢占用户,壮大起来。其他各厂商也紧随其后,纷纷推出自己产品的极速版,如今日头条极速版,腾讯新闻极速版等,也通过拉新奖励,阅读奖励等政策来吸引用户。

对于这类APP,实时风控是必不可少的,一个比较常见的实时风控场景就是防刷接口作弊。刷接口是黑产的一种作弊手段,APP上的各种操作,一般都会对应后台的某个接口,用户操作APP数据就会通过接口上报到后台,但如果黑产通过破解获取到了APP的新增用户接口,那他们就能跳过登陆APP步骤直接调后台接口构造虚假数据牟利了。对于这类业务,我们可以通过Flink + Redis来实现实时防刷接口的功能。数据流图如下所示:



刷接口作弊一般是越过登陆APP操作,直接调Server端的接口发数据,这些用户在APP的上报日志里面就不存在,那我们可以通过Flink将APP实时上报上来的新增用户写入Redis中,然后Server端将接口上报上来的用户与Redis里的用户进行比对,如果不在Redis里面则判为刷接口用户。

对于这个需求,得要求实时计算引擎能达到毫秒级延迟,否则会造成用户的误判和影响用户体验。为此我们选择了Flink作为实时计算引擎。

主要代码逻辑如下:

//配置flink运行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
//val env = StreamExecutionEnvironment.createLocalEnvironment()
env.enableCheckpointing(1000 * 60 * 5)
env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.AT_LEAST_ONCE)
env.getCheckpointConfig.setMinPauseBetweenCheckpoints(1000 * 60 * 3)
env.getCheckpointConfig.setMaxConcurrentCheckpoints(1)
env.setStateBackend(new FsStateBackend(checkPointPath))
env.getConfig.setLatencyTrackingInterval(1000)
env.getConfig.registerTypeWithKryoSerializer(classOf[Log], classOf[ProtobufSerializer])
env.setStreamTimeCharacteristic(EventTime)
env.setParallelism(parallel)
env.getConfig.setLatencyTrackingInterval(1000) //kafka source,实时消费kafka中日志解析出用户id
val stream = env.addSource(new FlinkKafkaConsumer010[Array[Log]](topic, new LogDeserializationSchema(), properties))
val data = stream.flatMap(x => x)
.map(log =>{
val userid = log.getUid.getUuid
val current_time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date())
(userid,current_time)
}).filter(record=>{
val userid = record._1
var flag = false
if(userid != null && !"".equals(userid)){
flag = true
}
flag
}) //redis sink,将APP上报日志的用户id写入redis供server端匹配
data.addSink(new RedisSink[(String, String)](getJedisClusterConfig, new RedisSinkMapper))
env.execute("newsinfo_active_userid_to_redis")

其中比较重要的几点:

1 构造kafka source

val stream = env.addSource(new FlinkKafkaConsumer010[Array[Log]](topic, new LogDeserializationSchema(), properties))

一般APP上报的都是序列化的数据,我们需要定义反序列化方法,LogDeserializationSchema 是一个protobuf类型的反序列化方法。

//将kafka中的数据解析为google protobuf 的Log,一个message可能包含多条Log
class LogDeserializationSchema extends AbstractDeserializationSchema[Array[Log]] {
override def deserialize(message: Array[Byte]): Array[Log] = {
val data = ArrayBuffer[Log]()
val input = new ByteArrayInputStream(message)
while (input.available() > 0) {
try {
data += Log.parseDelimitedFrom(input)
} catch {
case _: Throwable =>
}
}
input.close()
data.toArray
}
}

2 redis sink

这里用的是网上开源的flink-connector-redis依赖库。

更多相关内容见:http://bahir.apache.org/docs/flink/current/flink-streaming-redis

Maven依赖如下

<dependency>
<groupId>org.apache.bahir</groupId>
<artifactId>flink-connector-redis_2.11</artifactId>
<version>1.1-SNAPSHOT</version>
</dependency>

Redis Sink 提供用于向Redis发送数据的接口的类。接收器可以使用三种不同的方法与不同类型的Redis环境进行通信:

  • 单Redis服务器
  • Redis集群
  • Redis Sentinel

Redis Sink 核心类是 RedisMappe 是一个接口,使用时我们要编写自己的redis操作类实现这个接口中的三个方法,如下所示:

class RedisExampleMapper extends RedisMapper[(String, String)]{
override def getCommandDescription: RedisCommandDescription = {
new RedisCommandDescription(RedisCommand.HSET, "HASH_NAME")
} override def getKeyFromData(data: (String, String)): String = data._1 override def getValueFromData(data: (String, String)): String = data._2
}
val conf = new FlinkJedisPoolConfig.Builder().setHost("127.0.0.1").build()
stream.addSink(new RedisSink[(String, String)](conf, new RedisExampleMapper))

使用RedisCommand设置数据结构类型时和redis结构对应关系。

以上我们利用 Flink + Redis 实时了一个基本的实时防刷接口模型。关注微信公众号《大数据技术进阶》,观看更多大数据实战文章。

Flink实战| Flink+Redis实时防刷接口作弊的更多相关文章

  1. 使用Redis 计数器防止刷接口

    业务需求中经常有需要用到计数器的场景:为了防止恶意刷接口,需要设置一个接口每个IP一分钟.一天等的调用次数阈值:为了降低费用,限制发送短信的次数等.使用Redis的Incr自增命令可以轻松实现以上需求 ...

  2. 使用Redis+自定义注解实现接口防刷

    最近开发了一个功能,需要发送短信验证码鉴权,考虑到短信服务需要收费,因此对此接口做了防刷处理,实现方式主要是Redis+自定义注解(需要导入Redis的相关依赖,完成Redis的相关配置,gs代码,这 ...

  3. spring boot 对某个接口进行次数限制,防刷。简易版。demo。

    一般的项目 如果没有做防刷 容易被人爆接口 或者就是说没有做token防刷过滤. 容易被人用正常的token刷接口.有些token非一次性. 用户登录之后生成token会有一个过期时间,但一般没有做频 ...

  4. spring中实现基于注解实现动态的接口限流防刷

    本文将介绍在spring项目中自定义注解,借助redis实现接口的限流 自定义注解类 import java.lang.annotation.ElementType; import java.lang ...

  5. Flink + 强化学习 搭建实时推荐系统

    如今的推荐系统,对于实时性的要求越来越高,实时推荐的流程大致可以概括为这样: 推荐系统对于用户的请求产生推荐,用户对推荐结果作出反馈 (购买/点击/离开等等),推荐系统再根据用户反馈作出新的推荐.这个 ...

  6. 通过Redis、Memcache的 incr 原子操作防刷机制的使用差别

    我的版本如下: Redis:3.2.100 Memcache:1.4.4 最近在处理服务器压力测试的时候,想到一个方案,在一定时间段内限制用户访问次数.具体的实现就是通过redis的院子操作incre ...

  7. Spring Boot项目的接口防刷

    说明:使用了注解的方式进行对接口防刷的功能,非常高大上,本文章仅供参考 一,技术要点:springboot的基本知识,redis基本操作, 首先是写一个注解类: import java.lang.an ...

  8. Jmeter实时监控+SpringBoot接口性能实战

    性能测试 Jmeter实时监控+SpringBoot接口性能实战 自动化 SpringBoot Java Jmeter实时监控+SpringBoot接口性能实战 一.实验目的及实验环境 1.1.实验目 ...

  9. Spring Boot 项目的 API 接口防刷

    首先是写一个注解类 拦截器中实现 注册到springboot中 在Controller中加入注解 说明:使用了注解的方式进行对接口防刷的功能,非常高大上,本文章仅供参考 一,技术要点:springbo ...

随机推荐

  1. CSS——设置背景

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  2. Java String 对象,你真的了解了吗?

    String 对象的实现 String对象是 Java 中使用最频繁的对象之一,所以 Java 公司也在不断的对String对象的实现进行优化,以便提升String对象的性能,看下面这张图,一起了解一 ...

  3. Docker学习之docker常用命令

    docker ps -a 表示所有容器 docker pull 获取image docker build 创建image docker run 运行container docker images 列出 ...

  4. Spark学习之RDDs介绍

    什么是RDDS? RDDS即Resilient distributed datasets(弹性分布式数据集). Spark中,所有计算都是通过RDDs的创建,转换,操作完成的. 一个RDD是一个不可改 ...

  5. sql server 使用 partition by 分区函数 解决不连续数字查询问题

    sql server表中的某一列数据为不一定连续的数字,但是需求上要求按照连续数字来分段显示,如:1,2,3,4,5,6,10,11,12,13, 会要求这样显示:1~6,10~13.下面介绍如何实现 ...

  6. Java网络方面

    最近在面试 有些概念懂 但是需要梳理一下 借着面试看看自己会多少. 1.网络编程的同步 异步 阻塞 非阻塞? 同步:函数调用在没有得到结果之前,不返回任何结果: 异步:函数调用在没有得到结果之前,不返 ...

  7. Docker运行mysql,redis,oracle容器和SpringBoot项目

    dokcer运行SpringBoot项目 from frolvlad/alpine-oraclejdk8:slim VOLUME /tmp ADD target/demo-0.0.1-SNAPSHOT ...

  8. 【ASP.NET 基础】WCF入门教程一(什么是WCF)?

    一.概述 Windows Communication Foundation(WCF)是由微软发展的一组数据通信的应用程序开发接口,可以翻译为Windows通讯接口,它是.NET框架的一部分.由 .NE ...

  9. 聚类算法之K-means

    想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时候上述条件得不到满 ...

  10. vue解决刷新时闪烁

    原文地址:原文地址 1.在vue容器的div里面加上 v-cloak <div id="app" v-cloak> 2.样式文件中加上 <style type=& ...