题意

有n个点,且2|n,要求将其分为n/2对点对使得所有点对中距离之和尽量小

输出保留两位小数

考虑数据范围先想到的是搜索,然而搜索超时,我们发现在搜索的时候有重复搜索的情况,那么考虑记忆化,看到数据范围,便想到状压dp,每个点对应一个二进制位,未配对的记为1,已经配对的记为0。如n=8,未配对的点为1,3,5,7,则对应的二进制为01010101,对应的十进制为85,则把(1,3,5,7)配对的最小值存储在f[85]中。

那么我们可以写出状态转移方程

f[i]=min(f[i xor(1<<(x-1))xor(1<<(y-1))]+dis(x,y))

(i&(1<<(x-1))!=0)&(i&1<<(y-1))!=0)

然后这道题直接dp便可解决

#include<bits/stdc++.h>
using namespace std;
const int maxn=25;
const int INF=1000000;
struct node{
int x;
int y;
}a[maxn];
int n,S;
double dis[maxn][maxn],d[(1<<20)+5];
void ins(){
for(int i=1;i<=n;++i){
for(int j=i+1;j<=n;++j){
dis[i][j]=dis[j][i]=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
}
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%d %d",&a[i].x,&a[i].y);
}
ins();
for(int S=1;S<=(1<<n)-1;S++){
d[S]=INF;
int i;
for(i=1;i<=n-1;++i){
if(S&(1<<(i-1))) break;
}
for(int j=i+1;j<=n;j++){
if(S&(1<<(j-1))) d[S]=min(d[S],dis[i][j]+d[S^(1<<(i-1))^(1<<(j-1))]);
}
}
printf("%.2lf",d[(1<<n)-1]);
return 0;
}
/*
4
8730 9323
-3374 3929
-7890 -6727
1257 4689
*/

yzoj1891 最优配对问题 题解的更多相关文章

  1. 集合上的动态规划---最优配对问题(推荐:*****) // uva 10911

    /* 提醒推荐:五星 刘汝佳<算法竞赛入门经典>,集合上的动态规划---最优配对问题 题意:空间里有n个点P0,P1,...,Pn-1,你的任务是把它们配成n/2对(n是偶数),使得每个点 ...

  2. UVA 10911 Forming Quiz Teams(dp + 集合最优配对问题)

    4th IIUC Inter-University Programming Contest, 2005 G Forming Quiz Teams Input: standard input Outpu ...

  3. 「NOIP2009」最优贸易 题解

    「NOIP2009」最优贸易 题解 题目TP门 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 ...

  4. 最优配对问题(集合上的动态规划) —— 状压DP

    题目来源:紫书P284 题意: 给出n个点的空间坐标(n为偶数, n<=20), 把他们配成n/2对, 问:怎样配对才能使点对的距离和最小? 题解: 设dp[s]为:状态为s(s代表着某个子集) ...

  5. NOIP 2009 最优贸易 题解

    一道最短路的题,找一个买入和卖出相差最高的点即可,我们先以1为起点跑spfa,d1[x]不再表示距离而表示能够经过权值最小的节点的权值即 if(d1[y]>min(d1[x],price[y]) ...

  6. 洛谷 P1073 最优贸易 题解

    题面 大家都是两遍SPFA吗?我这里就一遍dp啊: 首先判断对于一个点u,是否可以从一号点走到这里,并且可以从u走到n号点: 对于这样的点我们打上标记: 那么抛出水晶球的点一定是从打上标记的点中选出一 ...

  7. 遗传编程(GA,genetic programming)算法初探,以及用遗传编程自动生成符合题解的正则表达式的实践

    1. 遗传编程简介 0x1:什么是遗传编程算法,和传统机器学习算法有什么区别 传统上,我们接触的机器学习算法,都是被设计为解决某一个某一类问题的确定性算法.对于这些机器学习算法来说,唯一的灵活性体现在 ...

  8. 【BZOJ】4144: [AMPPZ2014]Petrol

    题意 给定一个\(n\)个点.\(m\)条边的带权无向图,其中有\(s\)个点是加油站.每辆车都有一个油量上限\(b\),即每次行走距离不能超过\(b\),但在加油站可以补满.\(q\)次询问,每次给 ...

  9. 4560 NOIP2015 D2T2 子串

    4560 NOIP2015 D2T2 子串  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 有两 ...

随机推荐

  1. Go中的fmt几种输出的区别和格式化方式

    在日常使用fmt包的过程中,各种眼花缭乱的print是否让你莫名的不知所措呢,更让你茫然的是各种格式化的占位符..简直就是噩梦.今天就让我们来征服格式化输出,做一个会输出的Goer. fmt.Prin ...

  2. Git下载加速教程

    方法一 大家普遍采取的是更改本地的host文件,然后cmd命令刷新 1.访问这里,依次获取下面三个url的ping的ip github.com github.global.ssl.fastly.net ...

  3. c#自定义控件中的事件处理

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Drawing; u ...

  4. Visual Studio 2015&2017 key

    Visual Studio 2015 key Key : HMGNV-WCYXV-X7G9W-YCX63-B98R2 Visual Studio Enterprise 2015 Key :HM6NR- ...

  5. springboot启动慢解决方法

    jdk的配置文件中,使用securerandom.source设置了熵源: cat /usr/java/jdk1.8.0_121/jre/lib/security/java.security secu ...

  6. sea.js的同步魔法

    前些时间也是想写点关于CMD模块规范的文字,以便帮助自己理解.今天看到一篇知乎回答,算是给了我一点启发. 同步写法却不阻塞? 先上一个sea.js很经典的模块写法: // 定义一个模块 define( ...

  7. 漏洞挖掘技巧之利用javascript:

    好久没更新博客了,更新一波. 场景: window.location.href=”” location=”” location.href=”” window.location.* 常见地点:任何二次跳 ...

  8. IOS系统

    苹果产品以前技术是很牛逼.但是,苹果的系统是IOS系统,是一个封闭系统,就是你只看的到程序看不到文件的存储位置,相当于说他们自己的软件或者要花钱的软件才可以在闭环系统里面通过苹果视频该软件导出来,祝2 ...

  9. centos7搭建hadoop3.*.*系列

    最近搭建这个hadoop踩过不少坑,先是配置JDK搞错路径(普通用户和root用户下的路径不同),再就是hadoop版本不同导致的启动错误,网上找到的是hadoop2.*.*的版本,但是我安装的had ...

  10. Codeforces 936B

    题意略. 思路: 图论里掺杂了一些动态规划. 有几个注意点: 1.dp时状态的设计:因为我们要寻求的是出度为0并且可以从起点走奇数步抵达的点,由于同一个点可以通过多种方式到达. 并且我们在获得奇数步点 ...