CS224d 单隐层全连接网络处理英文命名实体识别tensorflow
什么是NER?
命名实体识别(NER)是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等。命名实体识别是信息提取、问答系统、句法分析、机器翻译等应用领域的重要基础工具,作为结构化信息提取的重要步骤。
NER具体任务
1.确定实体位置 2.确定实体类别
给一个单词,我们需要根据上下文判断,它属于下面四类的哪一个,如果都不属于,则类别为0,即不是实体,所以这是一个需要分成 5 类的问题:
• Person (PER)
• Organization (ORG)
• Location (LOC)
• Miscellaneous (MISC)
训练数据有两列,第一列是单词,第二列是标签。
EU ORG
rejects O
German MISC
Peter PER
BRUSSELS LOC
2.模型:
输入层的 x^(t) 为以 x_t 为中心的窗口大小为3的上下文语境,x_t 是 one-hot 向量,x_t 与 L 作用后就是相应的词向量,词向量的长度为 d = 50 :

建立一个只有一个隐藏层的神经网络,隐藏层维度是 100,y^ 就是得到的预测值,维度是 5:

用交叉熵来计算误差:

loss(J)对各个参数进行求导:


链式法则

在 TensorFlow 中求导是自动实现的,这里用Adam优化算法更新梯度,不断地迭代,使得loss越来越小直至收敛。
3.具体实现:
在 def test_NER() 中,我们进行 max_epochs 次迭代,每次,用 training data 训练模型 得到一对 train_loss, train_acc,再用这个模型去预测 validation data,得到一对 val_loss, predictions,我们选择最小的 val_loss,并把相应的参数 weights 保存起来,最后我们是要用这些参数去预测 test data 的类别标签:
def test_NER(): config = Config()
with tf.Graph().as_default():
model = NERModel(config) init = tf.initialize_all_variables()
saver = tf.train.Saver() with tf.Session() as session:
# 最好的值时,它的 loss 它的 迭代次数 epoch
best_val_loss = float('inf')
best_val_epoch = 0 session.run(init)
for epoch in xrange(config.max_epochs):
print 'Epoch {}'.format(epoch)
start = time.time()
###
train_loss, train_acc = model.run_epoch(session, model.X_train,
model.y_train)
# 2.用这个model去预测 dev 数据,得到loss 和 prediction
val_loss, predictions = model.predict(session, model.X_dev, model.y_dev)
print 'Training loss: {}'.format(train_loss)
print 'Training acc: {}'.format(train_acc)
print 'Validation loss: {}'.format(val_loss)
if val_loss < best_val_loss:
best_val_loss = val_loss
best_val_epoch = epoch
if not os.path.exists("./weights"):
os.makedirs("./weights") saver.save(session, './weights/ner.weights')
if epoch - best_val_epoch > config.early_stopping:
break
###
# 把 dev 的lable数据放进去,计算prediction的confusion
confusion = calculate_confusion(config, predictions, model.y_dev)
print_confusion(confusion, model.num_to_tag)
print 'Total time: {}'.format(time.time() - start)
# 再次加载保存过的 weights,用 test 数据做预测,得到预测结果
saver.restore(session, './weights/ner.weights')
print 'Test'
print '=-=-='
print 'Writing predictions to q2_test.predicted'
_, predictions = model.predict(session, model.X_test, model.y_test)
save_predictions(predictions, "q2_test.predicted") if __name__ == "__main__":
test_NER()
4.模型训练过程:
- 首先导入数据 training,validation,test:
# Load the training set
docs = du.load_dataset('data/ner/train') # Load the dev set (for tuning hyperparameters)
docs = du.load_dataset('data/ner/dev') # Load the test set (dummy labels only)
docs = du.load_dataset('data/ner/test.masked')
- 把单词转化成 one-hot 向量后,再转化成词向量:
def add_embedding(self):
# The embedding lookup is currently only implemented for the CPU
with tf.device('/cpu:0'): embedding = tf.get_variable('Embedding', [len(self.wv), self.config.embed_size])
# lookup window大小的context的word embedding
window = tf.nn.embedding_lookup(embedding, self.input_placeholder)
window = tf.reshape(
window, [-1, self.config.window_size * self.config.embed_size]) return window
- 建立神经层,包括用 xavier 去初始化第一层, L2 正则化和用 dropout 来减小过拟合的处理:
def add_model(self, window):
with tf.variable_scope('Layer1', initializer=xavier_weight_init()) as scope:
W = tf.get_variable(
'W', [self.config.window_size * self.config.embed_size,
self.config.hidden_size])
b1 = tf.get_variable('b1', [self.config.hidden_size])
h = tf.nn.tanh(tf.matmul(window, W) + b1)
if self.config.l2:
tf.add_to_collection('total_loss', 0.5 * self.config.l2 * tf.nn.l2_loss(W))
with tf.variable_scope('Layer2', initializer=xavier_weight_init()) as scope:
U = tf.get_variable('U', [self.config.hidden_size, self.config.label_size])
b2 = tf.get_variable('b2', [self.config.label_size])
y = tf.matmul(h, U) + b2
if self.config.l2:
tf.add_to_collection('total_loss', 0.5 * self.config.l2 * tf.nn.l2_loss(U))
output = tf.nn.dropout(y, self.dropout_placeholder)
return output
- 用 cross entropy 来计算 loss:
def add_loss_op(self, y):
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(y, self.labels_placeholder))
tf.add_to_collection('total_loss', cross_entropy)
loss = tf.add_n(tf.get_collection('total_loss'))
return loss
- 接着用 Adam Optimizer 把loss最小化:
def add_training_op(self, loss):
optimizer = tf.train.AdamOptimizer(self.config.lr)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op
每一次训练后,得到了最小化 loss 相应的 weights。
完整程序见:code
CS224d 单隐层全连接网络处理英文命名实体识别tensorflow的更多相关文章
- 基于BERT预训练的中文命名实体识别TensorFlow实现
BERT-BiLSMT-CRF-NERTensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuni ...
- NLP入门(八)使用CRF++实现命名实体识别(NER)
CRF与NER简介 CRF,英文全称为conditional random field, 中文名为条件随机场,是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机 ...
- 实现一个单隐层神经网络python
看过首席科学家NG的深度学习公开课很久了,一直没有时间做课后编程题,做完想把思路总结下来,仅仅记录编程主线. 一 引用工具包 import numpy as np import matplotlib. ...
- cs224d 作业 problem set2 (二) TensorFlow 实现命名实体识别
神经网络在命名实体识别中的应用 所有的这些包括之前的两篇都可以通过tensorflow 模型的托管部署到 google cloud 上面,发布成restful接口,从而与任何的ERP,CRM系统集成. ...
- HMM(隐马尔科夫模型)与分词、词性标注、命名实体识别
转载自 http://www.cnblogs.com/skyme/p/4651331.html HMM(隐马尔可夫模型)是用来描述隐含未知参数的统计模型,举一个经典的例子:一个东京的朋友每天根据天气{ ...
- 基于bert的命名实体识别,pytorch实现,支持中文/英文【源学计划】
声明:为了帮助初学者快速入门和上手,开始源学计划,即通过源代码进行学习.该计划收取少量费用,提供有质量保证的源码,以及详细的使用说明. 第一个项目是基于bert的命名实体识别(name entity ...
- DL4NLP —— 序列标注:BiLSTM-CRF模型做基于字的中文命名实体识别
三个月之前 NLP 课程结课,我们做的是命名实体识别的实验.在MSRA的简体中文NER语料(我是从这里下载的,非官方出品,可能不是SIGHAN 2006 Bakeoff-3评测所使用的原版语料)上训练 ...
- 神经网络结构在命名实体识别(NER)中的应用
神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognit ...
- 2. 知识图谱-命名实体识别(NER)详解
1. 通俗易懂解释知识图谱(Knowledge Graph) 2. 知识图谱-命名实体识别(NER)详解 3. 哈工大LTP解析 1. 前言 在解了知识图谱的全貌之后,我们现在慢慢的开始深入的学习知识 ...
随机推荐
- 关于js事件执行顺序小技巧
js事件执行顺序是js中一个老生常谈的一个话题, 聊这个话题之前我们先谈谈怎么给页面元素绑定我们需要的事件 1.给页面元素绑定事件 a)直接在元素上面加上需要绑定的事件,如 <button ty ...
- GYM 101173 K.Key Knocking(构造)
原题链接 参考自 问题描述:一个长度为3*n的01串,每次可以翻转连续的两个字符,要求至多翻转n次使得这个3*n的串至少有2*n个连续的段且相邻两端不一样(就是连续的0算一段,然后连续的1,…) 解法 ...
- jQuery基础 (一)——样式篇(jQuery选择器)
一.选择器类型 id选择器 class选择器 元素选择器 层级选择器 全选择器(*选择器) 二.有几种方式可以隐藏一个元素: CSS display的值是none. type="hidden ...
- Gitlab配置阿里邮件通知
1. 在/etc/gitlab/gitlab.rb 中添加如下内容 $ vi /etc/gitlab/gitlab.rb gitlab_rails['smtp_enable'] = true git ...
- maven打包子模块中的class文件
通常在项目中都会使用maven进行多模块管理,默认被依赖的模块都会以jar包形式被引用.然而在J2EE项目中,当使用了Spring的自动扫描配置时,jar包形式的依赖class将不能被自动装配:< ...
- Quartz.net创建windows服务
序言 安装服务 sc create XXService binpath= "XXService.exe" start= auto sc description XXService ...
- luogu 1006 传纸条
三/四维dp,将两次传递均看作从左上而来,在dp过程中注意防止越界/重合 f[i][j][k][l]直接枚举两轮的点,如下 #include<bits/stdc++.h> #define ...
- 【洛谷P1896【SCOI2005】】互不侵犯King
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入输出格式 输入格式: 只有一行,包 ...
- 寻路优化(二)——二维地图上theta*算法的设计探索
这篇文章是基于上一篇文章的研究上进行的,使得路径更加的平滑和自然,特此记录.有错误欢迎大家批评指正.如需转载请注明出处,http://www.cnblogs.com/Leonhard-/p/68660 ...
- [ZJOI2012]波浪弱化版(带技巧的DP)
题面 \(solution:\) 这道确实挺难的,情况特别多,而且考场上都没想到如何设置状态.感觉怎么设状态不能很好的表示当前情况并转移,考后发现是对全排列的构造方式不熟而导致的,而这一题的状态也是根 ...