BZOJ1296 [SCOI2009]粉刷匠 动态规划 分组背包
欢迎访问~原文出处——博客园-zhouzhendong
去博客园看该题解
题目传送门 - BZOJ1296
题意概括
有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷 T 次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。
题解
对于每一个木板,我们用f[i][j]表示在前i个里面刷j次的ans。
然后对于n个木板,分组背包就可以了。
代码
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
const int N=50+5,T=N*N;
int n,m,t,a[N],f[N][N],g[T];
int main(){
scanf("%d%d%d",&n,&m,&t);
memset(g,0,sizeof g);
while (n--){
char str[N];
scanf("%s",str+1);
for (int i=1;i<=m;i++)
a[i]=str[i]-48;
int bar[2];
memset(f,0,sizeof f);
for (int i=1;i<=m;i++)
for (int j=1;j<=m;j++){
memset(bar,0,sizeof bar);
bar[a[i]]++;
for (int k=i-1;k>=0;k--){
f[i][j]=max(f[i][j],f[k][j-1]+max(bar[0],bar[1]));
bar[a[k]]++;
}
}
for (int i=t;i>=0;i--)
for (int j=0;j<=m&&i+j<=t;j++)
g[i+j]=max(g[i+j],g[i]+f[m][j]);
}
printf("%d",g[t]);
return 0;
}
BZOJ1296 [SCOI2009]粉刷匠 动态规划 分组背包的更多相关文章
- [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2184 Solved: 1259[Submit][Statu ...
- [bzoj1296][SCOI2009]粉刷匠(泛化背包)
http://www.lydsy.com:808/JudgeOnline/problem.php?id=1296 分析: 首先预处理出每一行的g[0..T]表示这一行刷0..T次,最多得到的正确格子数 ...
- 【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)
[SCOI2009]粉刷匠 题目描述 \(windy\)有 \(N\) 条木板需要被粉刷. 每条木板被分为 \(M\) 个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能选择一条 ...
- bzoj1296: [SCOI2009]粉刷匠(DP)
1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...
- bzoj1296 [SCOI2009]粉刷匠——背包
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1296 对于不同木板之间,最终统计答案时做一个分组背包即可: 而要进行分组背包,就需要知道每个 ...
- BZOJ1296 [SCOI2009]粉刷匠 【dp】
题目 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个格子最多只能被粉刷 ...
- [SCOI2009]粉刷匠(动态规划,序列dp,背包)
分别对每块木板做区间dp,设\(g[i][j]\)表示前i个格子,刷恰好j次,并且第i格是合法的最多合法的格子数.从前往后枚举断点来转移就好了. 这样处理再出来\(g[i][j]\)每一块木板i刷j次 ...
- bzoj 1296: [SCOI2009]粉刷匠【dp+背包dp】
参考:http://hzwer.com/3099.html 神题神题 其实只要知道思路就有点都不难-- 先对每一行dp,设g[i][j]为这行前i个格子粉刷了k次最大粉刷正确数,随便n^3一下就行 设 ...
- bzoj 1296: [SCOI2009]粉刷匠 动态规划
Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...
随机推荐
- MSVCR120.dll丢失问题
一.问题:丢失MSVCR120.dll 二.解决方法 到官网下载vcredist_x86.exe安装即可 地址:https://www.microsoft.com/en-us/download/det ...
- 五校联考 running (欧拉函数)
题面 \(solution:\) 讲真吧,这道题真的出得,嗯,太恐怖了.考场上这道题真的把我看懵了,这道题以前是见过的,但欧拉函数?我学过吗?一道容斥都要超时的题目,我都要为我自己点根香了,拿着gcd ...
- UDP网络程序,客户端和服务端交互原理
创建一个udp客户端程序的流程是简单,具体步骤如下: 创建客户端套接字 发送/接收数据 关闭套接字 UDP是面向无连接的通讯协议,UDP数据包括目的端口号和源端口号信息,由于通讯不需要连接,所以可以实 ...
- Java 注解 (Annotation)你可以这样学
注解语法 因为平常开发少见,相信有不少的人员会认为注解的地位不高.其实同 classs 和 interface 一样,注解也属于一种类型.它是在 Java SE 5.0 版本中开始引入的概念. 注解的 ...
- Java 集合和映射表
集合 可以使用集合的三个具体类HashSet.LinkedHashSet.TreeSet来创建集合 HashSet类 负载系数 当元素个数超过了容量与负载系数的乘积,容量就会自动翻倍 HashSet类 ...
- 一套oracle的练习题
create table student( sno varchar2(10) primary key, sname varchar2(20), sage number(2), ssex varchar ...
- 一篇不错的CUDA入门
鉴于自己的毕设需要使用GPU CUDA这项技术,想找一本入门的教材,选择了Jason Sanders等所著的书<CUDA By Example an Introduction to Genera ...
- HTML学习笔记05-文本格式化
HTML格式化标签 HTML使用标签<b>与<i>对输出的文本进行格式,如:粗体or斜体 这些HTML标签称为格式化标签 <!DOCTYPE HTML> <h ...
- tomcat下部署应用helloworld
部署应用(简单)1.到Tomcat的安装目录的webapps目录,可以看到ROOT,examples, tomcat-docs之类Tomcat自带的的目录.2.在webapps目录下新建一个目录mya ...
- 005_git专题
一.仓库管理 ➜ gittest git:(master) git config --local user.name "arunguang" ➜ gittest git:(mast ...