Farmer John's N (1 ≤ N ≤ 10,000) cows are lined up to be milked in the evening. Each cow has a unique "grumpiness" level in the range 1...100,000. Since grumpy cows are more likely to damage FJ's milking equipment, FJ would like to reorder the cows in line so they are lined up in increasing order of grumpiness. During this process, the places of any two cows (not necessarily adjacent) can be interchanged. Since grumpy cows are harder to move, it takes FJ a total of X+Y units of time to exchange two cows whose grumpiness levels are X and Y.

Please help FJ calculate the minimal time required to reorder the cows.

Input

Line 1: A single integer: N.
Lines 2..
N+1: Each line contains a single integer: line
i+1 describes the grumpiness of cow
i.

Output

Line 1: A single line with the minimal time required to reorder the cows in increasing order of grumpiness.

Sample Input

3
2
3
1

Sample Output

7

Hint

2 3 1 : Initial order.
2 1 3 : After interchanging cows with grumpiness 3 and 1 (time=1+3=4).

1 2 3 : After interchanging cows with grumpiness 1 and 2 (time=2+1=3).
 
题意:有一群牛, 没头牛都有一个独一无二的暴躁度, 农夫想把暴脾气的牛排在后面, 他会将两头牛交换位置, 代价是两头牛的暴躁度之和;将所有的牛排好序, 最小的代价是多少?
 
思路:因为交换自然想到置换群,我们可以用循环里最小的数做媒介将较大的数换到相应的位置, 易得排好一个循环的代价为 :ans1 = sum+(cnt-2)*min;(cnt为循环长度,sum为循环的和,min为该循环的最小值)但这样做并一定不是最小的, 比如序列 : 17896; 两个循环(1)(7896), 用上面的公式得到 ans1 = 42, 但如果我们把1和6交换,用1作为媒介,代价为:
ans2 = sum+(cnt+1)*MIN+min(MIN为全局最小数), 通过比较ans1, ans2得到最小值;
 
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio> #define maxn 100010 using namespace std; int hay[maxn], shay[maxn], vis[maxn], pos[maxn];
int mi = , ans = , MI = ;
int n;
int main()
{
memset(vis, , sizeof(vis));
ios::sync_with_stdio(false); cin >> n;
for(int i = ; i <= n; i++)
{
cin >> hay[i];
shay[i] = hay[i];
mi = min(mi, hay[i]);
}
sort(hay+, hay+n+);
for(int i = ; i <= n ; i++)
{
pos[hay[i]] = i;
}
for(int i = ;i <= n; i++)
{
if(vis[i] == )
{
int tmp = i;
int cnt = ;
int sum = ;
MI = shay[tmp];
while(vis[tmp] == )
{
vis[tmp] = ;
cnt++;
sum += shay[tmp];
tmp = pos[shay[tmp]];
MI = min(MI, shay[tmp]);
}
ans += (sum + min((cnt-)*MI, MI+(cnt+)*mi));
}
}
cout << ans << endl;
return ;
}

这里没有代码。。。

参考链接 :http://www.cnblogs.com/kuangbin/archive/2012/09/03/2669013.html

 
 
 

C-Cow Sorting (置换群, 数学)的更多相关文章

  1. Cow Sorting(置换群)

    Cow Sorting Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6664   Accepted: 2602 Descr ...

  2. TOJ 1690 Cow Sorting (置换群)

    Description Farmer John's N (1 ≤ N ≤ 10,000) cows are lined up to be milked in the evening. Each cow ...

  3. POJ 3270 Cow Sorting(置换群)

    题目链接 很早之前就看过这题,思路题把,确实挺难想的,黑书248页有讲解. #include <cstdio> #include <cstring> #include < ...

  4. HDU Cow Sorting (树状数组)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2838 Cow Sorting Problem Description Sherlock's N (1  ...

  5. BZOJ1697: [Usaco2007 Feb]Cow Sorting牛排序

    1697: [Usaco2007 Feb]Cow Sorting牛排序 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 387  Solved: 215[S ...

  6. hdu 2838 Cow Sorting(树状数组)

    Cow Sorting Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  7. Cow Sorting hdu 2838

    Cow Sorting Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  8. BZOJ_1697_[Usaco2007 Feb]Cow Sorting牛排序_贪心

    BZOJ_1697_[Usaco2007 Feb]Cow Sorting牛排序_贪心 Description 农夫JOHN准备把他的 N(1 <= N <= 10,000)头牛排队以便于行 ...

  9. 树状数组 || 线段树 || Luogu P5200 [USACO19JAN]Sleepy Cow Sorting

    题面:P5200 [USACO19JAN]Sleepy Cow Sorting 题解: 最小操作次数(记为k)即为将序列倒着找第一个P[i]>P[i+1]的下标,然后将序列分成三部分:前缀部分( ...

  10. 【BZOJ 1697】1697: [Usaco2007 Feb]Cow Sorting牛排序

    1697: [Usaco2007 Feb]Cow Sorting牛排序 Description 农夫JOHN准备把他的 N(1 <= N <= 10,000)头牛排队以便于行动.因为脾气大 ...

随机推荐

  1. 转:jquery的$(function(){})和$(document).ready(function(){}) 的区别

    原文链接:https://www.cnblogs.com/slyzly/articles/7809935.html [转载]jquery的$(function(){})和$(document).rea ...

  2. LeetCode 559 Maximum Depth of N-ary Tree 解题报告

    题目要求 Given a n-ary tree, find its maximum depth. The maximum depth is the number of nodes along the ...

  3. 20165336 实验三 敏捷开发与XP实践

    20165336 实验三 敏捷开发与XP实践 一.实验报告封面 课程:Java程序设计 班级:1653班 姓名:康志强 学号:20165336 指导教师:娄嘉鹏 实验日期:2018年4月28日 实验时 ...

  4. 【PyQt5-Qt Designer】QLineEdit 文本输入

    QLineEdit 文本输入 一.QlineEdit 基本方法 setAlignment() 按固定值方式对齐文本 Qt.AlignLeft:水平方向靠左对齐 Qt.AlignRight:水平方向靠右 ...

  5. zabbix准备:php安装

    一.安装php依赖库 ftp://xmlsoft.org/libxml2/libxml2-2.9.3.tar.gz yum install python-devel -y cd /download/ ...

  6. 小程序升级实时音视频录制及播放能力,开放 Wi-Fi、NFC(HCE) 等硬件连接功能

    “ 小程序升级实时音视频录制及播放能力,开放 Wi-Fi.NFC(HCE) 等硬件连接功能.同时提供按需加载.自定义组件和更多访问层级等新特性,增强了第三方平台的能力,以满足日趋丰富的业务需求.” 0 ...

  7. 自定义UIProgressView

    自定义CustomporgressView #import <UIKit/UIKit.h> @interface CustomporgressView : UIView @property ...

  8. mysql 5.7配置项最详细的解释

    配置样例 首先提供一个我使用的配置样例 [client] #password=88888888 socket=/data/var/mysql/mysql.sock [mysqld_safe] pid- ...

  9. Cell complex单元复合形

    概念 (1)Piecewise linear complex (PLC) 分段线性复合形 (2)Cell complex 单元复合形 [1] (元胞复合形) (3)Linear Cell Comple ...

  10. c 字符数组与字符串

    char a[]="abc"; printf( char str[]="abc"; int size = sizeof(str)/sizeof(char); p ...