DP大大大大大赏
还是前置:
动态规划的三种实现方法:
递推,递归,记忆化搜索
然后还是从斐波那契数列开始引入:
两种求斐波那契数列的方法:

1.用其他位置的结果得到自己的结果:

2.用自己的结果算其他的结果;

以上两种方法都需要掌握,不同的题对应不同的写法;
3.记忆化搜索(虽然zhx说不是特别重要但lz比较喜欢写的)
没有记忆化之前:O(f[n])与2^n差不多是一个级别的;

记忆化之后:

DP的一些一些要求:
无后效性:所有状态之间组成了一个DAG
阶段性:
转移方程:怎么算这个东西
状态:要算的东西对应的东西
乱序转移:
把所有状态当做点,所有转移当做边,然后进行拓扑排序;
要讲的几种DP:
l 数位DP
l 树形DP
l 状压DP
l 博弈论DP
l 区间DP
l 背包
乱序宣讲:
1.背包问题:
先看一个最简单的问题:
problem 1:
N个物品,M容量,每个物品都有体积和价值,最大化价值和;
典型的01背包问题,比较经典的例题是采药;
两种方法:1.用自己更新别人:
不选第i个物品,体积不变:f[i+1][j]=f[i][j]
选择第i+1个物品,体积增加:f[i+1][j+vi+1]=f[i][j]+wi+1

2.别人更新自己:
f[i][j]=max(f[i-1][j],f[i-1][j-vi]+wi)分别对应不选/选第i个物品;

#include<iostream> using namespace std; int n,m,w[],v[];
int f[][]; int main()
{
cin >> n >> m;
for (int a=;a<=n;a++)
cin >> v[a] >> w[a];
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
{
f[i][j] = f[i-][j];
if (j >= v[i]) f[i][j] = max(f[i][j],f[i-][j-v[i]]+w[i]);
}
int ans=;
for (int a=;a<=m;a++)
ans = max(ans,f[n][a]);
cout << ans << endl;
return ;
}
problem 2:(完全背包)
每个物品可以用无限次:
朴素的想法:
枚举第i个物品放了多少个;

但是显然O(n^3)不够优;
考虑优化:
f[i][j]来说,上面的思路是有i-1行的某个数转移过来的,但实际上我们并不需要这样枚举转移,我们可以从左侧转移,假设当前已经选了一个x物品了,如果我们由左边更新过来,那可能我们算到的正是已经选择过一个x物品的状态,这样,背包就变成无限的啦;
修改代码:
变成了可以由同一行转移过来,横着转移x次<=>我用了x个第i个物品;

problem 3:(多重背包)
如果每个物品可以用有限次?
考虑像完全背包一样枚举使用物品个数:

尝试优化:
vi*13:
造物品:
- 体积为vi只能用1次的物品,
- 体积为2vi只能用1次的物品;
- 体积为4vi只能用1次的物品;
- 体积为6vi只能用1次的物品;
- 可以把所有1~13内的体积表示出来

=>转化为01背包;
O(n^2*k)
怎么变成若干捆绑包?
先用二进制表示,不足二进制的再用总的减去
发现k≈logn
复杂度O(nmlogn)

绿框即为凑不够一个二进制然后减下来的
为什么可以把所有数表示出来?
恰好可以表示为x个二进制数:

这样对于每一位都有0/1两种情况,1~31的每个数,都可以写成5位内的二进制,然后每一位只有0和1嘛,显然都可以通过上面算出来,对于不是恰好拆分成二进制的,可以先不看最后的数,然后看成1~31+x;
造捆绑包:

基础DP:
problem 1:
- 数字三角形
- 给你一个三角形
- 问从怎么走能够取得最大代价
每次可以向下或向右下走,使得走过的这条路,所有数字之和最大;

正着推:f[i][j]=max(f[i-1][j],f[i-1][j-1])+a[i][j];最后要枚举最后一行哪一guo最大;
突然安利的oj:joyoi
数字三角形2:


#include<iostream>
#include<cstdio>
#include<algorithm>
#define mod 100 using namespace std; inline int read(){
int ans=;
char last=' ',ch=getchar();
while(ch>''||ch<'') last=ch,ch=getchar();
while(ch>=''&&ch<='') ans=(ans<<)+(ans<<)+ch-'',ch=getchar();
if(last=='-') ans=-ans;
return ans;
} int n;
int a[][];
bool f[][][]; int main(){
n=read();
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
a[i][j]=read();
f[][][a[][]%mod]=;
for(int i=;i<=n;i++){
for(int j=;j<=i;j++){
for(int k=;k<;k++){
f[i][j][k]=(f[i-][j-][(k-a[i][j]+mod)%mod]|f[i-][j][(k-a[i][j]+mod)%mod]);
}
}
}
bool bj=;
for(int k=;k>=;k--){
for(int i=;i<=n;i++){
if(f[n][i][k]){
printf("%d",k);
bj=;
break;
}
}
if(bj==)
break;
}
return ;
}

自己更新别人,因此只需要算到n-1行;
当状态是可行的我们才用它更新别人;
转移啊:

最后计算答案:
枚举最后一行走到哪一列,然后枚举走出来的和%100是多少。

#include<iostream>
#include<cstdio>
#include<algorithm>
#define mod 100 using namespace std; inline int read(){
int ans=;
char last=' ',ch=getchar();
while(ch>''||ch<'') last=ch,ch=getchar();
while(ch>=''&&ch<='') ans=(ans<<)+(ans<<)+ch-'',ch=getchar();
if(last=='-') ans=-ans;
return ans;
} int n;
int a[][];
bool f[][][]; int main(){
n=read();
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
a[i][j]=read();
f[][][a[][]%mod]=;
for(int i=;i<n;i++){
for(int j=;j<=i;j++){
for(int k=;k<;k++){
if(f[i][j][k]){
f[i+][j][(k+a[i+][j])%mod]=;
f[i+][j+][(k+a[i+][j+])%mod]=;
}
}
}
}
int ans=;
for(int i=;i<=n;i++)
for(int k=;k<;k++)
if(f[n][i][k])
ans=max(ans,k);
printf("%d",ans);
return ;
}
最长上升子序列;
当n>=10^5,第二层j的枚举可以用线段树来做;
有时可以用数据结构优化DP
f[i]表示以第i个数结尾的最长上升子序列的长度,那么f[i]=max(f[j])+1,其中1<=j<i;

#include<iostream>
#include<cstdio>
#include<algorithm> using namespace std; inline int read(){
int ans=;
char last=' ',ch=getchar();
while(ch>''||ch<'') last=ch,ch=getchar();
while(ch>=''&&ch<='') ans=(ans<<)+(ans<<)+ch-'',ch=getchar();
if(last=='-') ans=-ans;
return ans;
} int n,ans;
int p[],f[]; int main(){
n=read();
for(int i=;i<=n;i++){
p[i]=read();
}
f[]=;p[]=-;
for(int i=;i<=n;i++){
for(int j=;j<i;j++){
if(p[i]>p[j]) f[i]=max(f[i],f[j]);
}
f[i]+=;
}
for(int i=;i<=n;i++) ans=max(ans,f[i]);
printf("%d",ans);
return ;
}
区间DP:
区间DP特征:给n个东西,每次只能合并两个相邻的东西;
最最最最最典型的例子,石子合并
合并的顺序不同,代价也不同;
f[l][r]把第l堆石子到第r堆石子合并成一堆的最小代价是多少;
f[l][l]=0;
合并[l,r]
我们可以找到一个分界线,先将分界线左边的石子合并为一堆,然后右边的合并成一堆,最后再将这两堆合并成一堆(将这两堆合并的代价是这一段石子的区间和):
然后维护前缀和来计算区间和;

注意要枚举区间长度,然后枚举左端点,计算右端点;
切不可两层循环枚举左右端点;

一个有关矩阵乘法的问题:
矩阵乘法
自定义顺序
使得运算次数最少
矩阵乘法结合律:

N个矩阵, M1 , M2, M3……Mn
大小为: a1*a2 a2*a3 a3*a4 an*an+1

操作:合并两个相邻的矩阵;
目标:合并成一个矩阵;
f[l][r]把第l~第r个矩阵合并成一个矩阵;
f[l][r]=min(f[l][p]+f[p+1][r]+al*ap+1*ar+1);
能量项链的说

状压DP:
n<=20(22)<=>状压
problem 1:p1171

第i个点坐标 xi,yi;
f[s][i]
s:n位的二进制数,已经走到过的点
:{1,2,4,6}说明已经走过1,2,4,6点,对应二进制=>101011

转化为10进制:11=>01011;
常见压缩方法:把数组表示为k进制的数;
转移:枚举一个j,表示第j个点,然后要求j是没走过的;
因为是状压DP,为了方便二进制的表示,我们的循环从0开始。
初始化f数组为为超级大的一个数,然后f[s][i]表示状态s(转化为二进制后1代表已经走了这个数,0代表没有走这个点)并且现在在点i时的最短路径,显然起点1-1时为0(注意点的下标从0开始因此最后都要-1)
然后枚举状态,尝试转移:,j
然后枚举当前走到了哪个点,判断这种状态有没有被更新过,如果被更新过了,我们用它更新其他的点;
枚举接下来走哪个点,要注意判断这个点之前要没有走过,然后更新状态,将新状态赋值;
最后答案是枚举最后走到哪个点,然后加上最后走到的点到起点的距离,取最小,就是最后的答案;
伪代码:
#include<iostream> using namespace std; double f[][];
double x[],y[]; int main()
{
cin >> n;
for (int a=;a<n;a++)
cin >> x[a] >> y[a];
f=∞
f[][]=;
for (int s=;s<(<<n);s++)
for (int i=;i<n;i++)
if (f[s][i] < ∞)
{
for (int j=;j<n;j++)
if ( ((s>>j) & ) == )
{
int news = s | (<<j);
f[news][j] = min(f[news][j],f[s][i] + dis(i,j));
}
}
for (int i=;i<n;i++)
ans=min(ans, f[(<<n)-][i] + dis(i,)); return ;
}
problem 2:luogu1879

f[i][s]前i行草已经种完了,这一行的草长成s样时的方案数;
用二进制的数来代表第i行每个位置有没有种草
判断第i行S和第i+1行S’没有相邻的草:S&S’==0;
problem 3:p1896

n<=8
枚举怎么放国王,然后判断是否冲突,因为多了一个恰好,因此我们加一维:f[i][s][j]代表:i与s的表示同上题,j表示现在放了j国王了;
然后判断需要修改一下;
数位DP:
什么是数位DP?难啊
DP时按照数的每一位一位一位进行转移的;
举个栗子:
给定两个数l,r,问从了l~r有多少个数;
显然是ans=r-l+1
- 往往先进行前缀和转化;
从高位向低位
f[i][1/0] 已经填好第i位 j==0? now<x:无法确定now(其实就是目前和x长得一样);
在以上情况这种数有多少个;
考虑下一位要填什么数;

x只有l位,那么y的l+1,l+2……位(个位最小)只能填0,那么填第l+1位和x一样的方案数只有1中(全为0)

填了之后y>x;
problem2:
求[l,r]中的数的数位之和
仍然是维护一个前缀和:

problem 3:BZOJ1026 windy数

f[i][j][k]已经填好了第i位;j:</=;k:第i位填了k
保证第i位和第i+1位的数字大小差至少2;
差不多搞定了?
problem 4:BZOJ2757
K<=10^18;
有一些位置永远不会用到,比如13,存在的只能是<10的质数;

数组大小a:log210^18 b:log310^18 c:log510^18 d:log710^18
再优化:
把所有以上形式
的数算出来,大概有30000多个,预处理出来,然后放到数组中,然后转移f[i][j][k],表示是这三万多个数中第k个数qwq;
树形DP:
假设为有根树;
从下到上
在每个点,维护以其为根的子树的信息;
problem 1:
求树上有多少个点?
f[i]表示以i为根的子树有多少个点?

problem 2:
求树的直径;
在树上找两个点,使他们距离最远;
从每个点向下走,最长和次长是多少
f[i][0]从i这个点向下走,最长的是多少;
f[i][1]从i这个点向下走,次长的是多少;
然后枚举在每个点转弯的最大值和次大值的和,求一个最大的;
f[i][0]=max(f[pj][0]) +1 pj∈son(i);
f[i][1]=max(f[pk][0])+1pk!=pj,pk∈son(i)避免和f[i][0]选到同一个位置去,那么f[pj][1]不能用了,其余的最长路显然大于次长路,因此只需要在剩余儿子中找一个最大的(总体次大的);

problem 3:
求树上路径总长度和
f[i]表示以i为根的子树有多少个点;
然后
考虑一条边,会被多少条路径经过:
只要保证一个点在子树中,一个点在子树外面选一个点,一定会经过这条边,然后路径可以正着走,也可以反着走,需要*2

problem 4:Poj2342

f[i][0/1] 以i为根的子树中,选出若干个点,权值最大是多少
0=> i没选 1=>i选了;
最后答案:max(f[1][0],f[1][1])
f[i][1]=Σf[j][0]+a[i] j∈son(i);
f[i][0]=Σmax(f[j][0],f[j][1]) j∈son(i)

#include<iostream>
#include<cstdio>
#include<algorithm> using namespace std; inline int read(){
int ans=;
char last=' ',ch=getchar();
while(ch>''||ch<'') last=ch,ch=getchar();
while(ch>=''&&ch<='') ans=(ans<<)+(ans<<)+ch-'',ch=getchar();
if(last=='-') ans=-ans;
return ans;
} int n,k,l;
int f[][];//1 choose this people/0 do not choose this people
struct node{
int fa,cnt,r;
int son[];
}p[]; void dfs(int node){
if(!p[node].cnt) {
f[node][]=p[node].r;
f[node][]=;
return;
} for(int i=;i<=p[node].cnt;i++){
dfs(p[node].son[i]);
}
for(int i=;i<=p[node].cnt;i++){
f[node][]+=f[p[node].son[i]][];
f[node][]+=max(f[p[node].son[i]][],f[p[node].son[i]][]);
}
f[node][]+=p[node].r;
} int main(){
n=read();
for(int i=;i<=n;i++) p[i].r=read();
for(int i=;i<n;i++) {
l=read();k=read();
p[l].fa=k;
p[k].son[++p[k].cnt]=l;
}
int s;
for(int i=;i<=n;i++){
if(!p[i].fa) dfs(i),s=i;
}
printf("%d",max(f[s][],f[s][]));
return ;
}
迷之MLE,然后把son改小为原来的1/2,居然过了
problem 5:poj1463

f[i][0/1] 以i为根的子树所有节点都被守护(0i没有士兵,1i有士兵)所需最少士兵数量
f[i][0]=Σf[j][1] j∈son(i) //父亲不放士兵,所以儿子一定要放士兵
f[i][1]=Σmin(f[j][0],f[j][1])+1 j∈son(i) //父亲不放士兵,那么儿子放不放无所谓,取放与不放的最小值
up:消防局的设立;luogu2279
守护所有距离不超过2的节点:
f[i][0/1/2]以i为根的子树已经全部覆盖的情况下,i这个点向下走,到达最近的士兵的距离是0/1/2的最小士兵数;
相当于自己放士兵f[i][0]=Σmin(f[j][0/1/2])+1; j∈son(i);
相当于儿子放士兵f[i][1]再跑一个DP来求f[i][1]:
用另一个数组g[j][1/0];已经确定了前j个儿子的取值,其中这j个儿子中有(1)没有(0)拿出一个0值(到达最近士兵距离为0)来更新答案;
相当于孙子放士兵f[i][2]
另一种解法:
定根之后,找到这棵树中深度最深的叶子节点:
1.自己 2.兄弟 3.父亲 4.爷爷
应该选择哪一种?
显然是4,因为把士兵放在1 2 3位置能覆盖到的所有节点,放在4都可以被覆盖;
找出深度最深的节点,找到他的爷爷,在爷爷的位置放一个士兵,把它爷爷能覆盖到的所有节点直接从树中删掉;
重复直到没有节点;
N堆石子,可以合并任意两堆,合并的代价是两堆的异或和;
状压dp。f[s]把s所对应的石子,合并为1堆的最小代价;

枚举0 2 3 5的一个子集,

枚举每个状态的石子总和

初始化,求最小,所以初始为无穷大。然后只合并一堆代价为0;
枚举s的子集a:
判断a为s的子集:

剩下那坨石子:a^s;



但是,这个算法过不了n=16 O(4^n)
改进:


O(3^n)
博弈论DP:
类型1:现在有一个游戏G,两个人玩,回合制,没有平局;胜负的区分方法:当某个人没办法进行操作时,这个人就输了;
然后两个人都绝顶聪明,会做出对自己最最最最有利的操作。
一般问的都是先手是否必胜,或者先手是否必败。
当走到某个状态后,无法再走,则再此点的人一定会输,称为必败态;
因为绝顶聪明,所以左上角的点是必胜态

f[s]=1/0 s是一个状态。状态s是否是必胜;
s1~sm如果存在f[si]=0(必败态),则有f[s]=1;
任意f[si]=1,则f[s]=0;
problem 1:

f[i][j]原数还剩下i,对手上一次减了j,这种情况是必胜,还是必败;

建议用记忆化搜索;
f[i][j]必胜or必败,g[i][j]i,j对应的状态算没算过;

第二类:n个游戏G1,G2……Gn,两个人,回合制,分出胜负,在每个游戏中都不能动的输;
取石子游戏:
n堆石子,a1,a2,……an;Alice and Bob,Alice先手。从某一堆石子中取走任意多个石子,当谁没法取石子,谁就输了
SG函数:
sg[必败态]=0;
此题中:sg[1]=1;sg[2]=2;
sg[x]所有可以转移到状态中的sg没有出现过的最小自然数;


在本题中,sg[n]=n;
如果一个游戏的sg!=0 先手必败;
sg=0先手必败;
SG定理:
n个游戏组合在一起的SG值,等于每个游戏的SG值异或起来;


取石子-改:
n堆石子,a1,a2,……an;Alice and Bob,Alice先手。从某一堆石子中取走1~4个石子,当谁没法取石子,谁就输了
sg[ai]=ai%5;
problem 4:

博弈论问题一般:把题目转化为基本的取石子问题;
算出每堆是奇数个还是偶数个,1为奇数,2为偶数;把所有奇数堆的下标取出来,异或起来=0先手必败,!=0先手必胜


把所有下标为奇数的位置的石子异或起来就是答案:


距离终点为奇数的格子上的棋子异或起来;

f[s] s:n位的二进制数,代表每个位置有没有被标记过,然后炸了。
考虑当做多个游戏
保证先手必胜,则先手涂色的左右两个都不能涂色,将剩余的拆成两个独立的游戏,再将其合并
sg[i]长度为i的横条,sg值是多少
BZOJ2789

f[x][y] =>f[1][x+y]
=>f[2x][y]
=>f[3x][y]
f[a][b][y] x=2^a*3^b;

DP大大大大大赏的更多相关文章
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...
- AEAI DP V3.7.0 发布,开源综合应用开发平台
1 升级说明 AEAI DP 3.7版本是AEAI DP一个里程碑版本,基于JDK1.7开发,在本版本中新增支持Rest服务开发机制(默认支持WebService服务开发机制),且支持WS服务.RS ...
- AEAI DP V3.6.0 升级说明,开源综合应用开发平台
AEAI DP综合应用开发平台是一款扩展开发工具,专门用于开发MIS类的Java Web应用,本次发版的AEAI DP_v3.6.0版本为AEAI DP _v3.5.0版本的升级版本,该产品现已开源并 ...
- BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4026 Solved: 1473[Submit] ...
- [斜率优化DP]【学习笔记】【更新中】
参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- px、dp和sp,这些单位有什么区别?
DP 这个是最常用但也最难理解的尺寸单位.它与“像素密度”密切相关,所以 首先我们解释一下什么是像素密度.假设有一部手机,屏幕的物理尺寸为1.5英寸x2英寸,屏幕分辨率为240x320,则我们可以计算 ...
- android px转换为dip/dp
/** * 根据手机的分辨率从 dp 的单位 转成为 px(像素) */ public int dipTopx(Context context, float dpValue) { final floa ...
随机推荐
- 【线性代数】2-1:解方程组(Ax=b)
title: [线性代数]2-1:解方程组(Ax=b) toc: true categories: Mathematic Linear Algebra date: 2017-08-31 15:08:3 ...
- asmlinkage的用法
转自:https://www.cnblogs.com/china_blue/archive/2010/01/15/1648523.html https://blog.csdn.net/liujiaoy ...
- *p++=i怎么理解?
#include<stdio.h> void fibonacci(int *p,int n) { *p++=1; *p++=1; while(n>2) { *p++=*(p-1)+* ...
- [笔记]Header V4 RSA/SHA256 Signature, key ID 4d274df2: NOKEY 解决办法
问题描述: 原因: IUS-COMMUNITY-GPG-KEY,版本太旧 解决: 切换到rpm-gpg目录中,下载最新的IUS-COMMUNITY-GPG-KEY
- 第七章 python基础之函数,递归,内置函数
五 局部变量和全局变量 name='cyj' #在程序的一开始定义的变量称为全局变量. def change_name(): global name #global 定义修改全局变量. name=&q ...
- Mac 下python3 [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed 解决方法
原文:http://blog.yuccn.net/archives/625.html python3.6下使用urllib 的request进行url 请求时候,如果请求的是https,请求可以会出现 ...
- tkinter入门-按钮的基本属性
1. 尺寸的大小 ipadx 和 ipady import tkinter root = tkinter.Tk() root.minsize(500, 500) # 基本属性 # 按钮组件 # 绝 ...
- 如何将ubuntu16.04升级到ubuntu 18.04?
答:步骤如下: 1. sudo apt update (更新软件源) 2. sudo apt upgrade (更新内核相关的包) 3. sudo apt dist-upgrade 4. sudo ...
- 纯CSS实现加载转圈样式
不同的项目中对于等待加载时转圈圈的样式是不同的,有的是传统的转圈的gif图片,见得比较多的是将转圈圈的换成了可爱的图标.有时候项目中加入等待加载的图片会很违和,不符合美观,所以需要用CSS做一个.下面 ...
- spark的RDD如何转换为DataFrame
1.Dataset与RDD之间的交互 Spark仅支持两种方式来将RDD转成Dataset.第一种方式是使用反射来推断一个RDD所包含的对象的特定类型.这种基于反射的方式会让代码更加地简洁,当你在编写 ...