大意: 给定$n,k,l,m$, 求有多少个长度为$n$, 元素全部严格小于$2^l$, 且满足

的序列.

刚开始想着暴力枚举当前or和上一个数二进制中$1$的分布, 但这样状态数是$O(64^3)$在加上矩阵幂的复杂度显然不行.

看了题解发现可以按每位单独来考虑.

#include <iostream>
#include <sstream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head ll n, k, l, m; struct Mat {
int v[4][4];
Mat() {memset(v, 0, sizeof v);}
Mat operator * (const Mat& b) const {
Mat c;
REP(k,0,3) REP(i,0,3) REP(j,0,3) {
c.v[i][j] = ((ll)v[i][k]*b.v[k][j]+c.v[i][j])%m;
}
return c;
}
Mat operator ^ (ll nn) {
Mat b, a=*this;
REP(i,0,3) b.v[i][i]=1;
while(nn) {
if(nn&1LL) b=b*a;
nn>>=1LL,a=a*a;
}
return b;
}
}; int main() {
cin>>n>>k>>l>>m;
if (m==1||l<64&&(k>>l)) return puts("0"),0;
Mat g;
g.v[0][0]=g.v[0][2]=g.v[1][1]=g.v[1][3]=g.v[2][0]=g.v[3][1]=g.v[3][2]=g.v[3][3]=1;
g = g^n;
int x = (g.v[0][0]+g.v[2][0])%m, y = (g.v[1][0]+g.v[3][0])%m;
ll ans = 1;
REP(i,0,l-1) {
if (k>>i&1) ans = ans*y%m;
else ans = ans*x%m;
}
printf("%lld\n", ans);
}

GukiZ and Binary Operations CodeForces - 551D (组合计数)的更多相关文章

  1. Codeforces 551D GukiZ and Binary Operations(矩阵快速幂)

    Problem D. GukiZ and Binary Operations Solution 一位一位考虑,就是求一个二进制序列有连续的1的种类数和没有连续的1的种类数. 没有连续的1的二进制序列的 ...

  2. Codeforces 551 D. GukiZ and Binary Operations

    \(>Codeforces \space 551 D. GukiZ and Binary Operations<\) 题目大意 :给出 \(n, \ k\) 求有多少个长度为 \(n\) ...

  3. Codeforces Round #307 (Div. 2) D. GukiZ and Binary Operations 矩阵快速幂优化dp

    D. GukiZ and Binary Operations time limit per test 1 second memory limit per test 256 megabytes inpu ...

  4. D. GukiZ and Binary Operations(矩阵+二进制)

    D. GukiZ and Binary Operations   We all know that GukiZ often plays with arrays. Now he is thinking ...

  5. Codeforces Round #307 (Div. 2) D. GukiZ and Binary Operations (矩阵高速幂)

    题目地址:http://codeforces.com/contest/551/problem/D 分析下公式能够知道,相当于每一位上放0或者1使得最后成为0或者1.假设最后是0的话,那么全部相邻位一定 ...

  6. Codeforces Round #307 (Div. 2) D. GukiZ and Binary Operations

    得到k二进制后,对每一位可取得的方法进行相乘即可,k的二进制形式每一位又分为2种0,1,0时,a数组必定要为一长为n的01串,且串中不出现连续的11,1时与前述情况是相反的. 且0时其方法总数为f(n ...

  7. Intercity Travelling CodeForces - 1009E (组合计数)

    大意: 有一段$n$千米的路, 每一次走$1$千米, 每走完一次可以休息一次, 每连续走$x$次, 消耗$a[1]+...+a[x]$的能量. 休息随机, 求消耗能量的期望$\times 2^{n-1 ...

  8. Yet Another Problem On a Subsequence CodeForces - 1000D (组合计数)

    大意:定义一个长为$k>1$且首项为$k-1$的区间为好区间. 定义一个能划分为若干个好区间的序列为好序列. 给定序列$a$, 求有多少个子序列为好序列. 刚开始一直没想出来怎么避免重复计数, ...

  9. Anton and School - 2 CodeForces - 785D (组合计数,括号匹配)

    大意: 给定括号字符串, 求多少个子序列是RSGS. RSGS定义如下: It is not empty (that is n ≠ 0). The length of the sequence is ...

随机推荐

  1. 在iOS开发中使用icon font的方法

    http://iconfont.cn/help/iconuse.html 在开发阿里数据iOS版客户端的时候,由于项目进度很紧,项目里的所有图标都是用最平常的背景图片方案来实现.而为了要兼容普通屏与R ...

  2. linux下编译利用CMakeLists.txt 编译C++写的opencv程序

    https://hihozhou.com/blog/2017/05/11/linux-compile-opencv-c++-file.html cmake . make -j8

  3. Mybatis-Plus BaseMapper自动生成SQL及MapperProxy

    目录 Spring+Mybatis + Mybatis-Plus 自定义无XML的sql生成及MapperProxy代理生成 问题产生背景 框架是如何使用 无Xml的SQL是如何生成生成及SQL长成什 ...

  4. Linux下出现Permission denied解决

    今天不想写前言,直接写解决办法 输入命令设置root密码 sudo passwd 得到的答复是 We trust you have received the usual lecture from th ...

  5. nginx 实现高并发和高负载

    一.Nginx是如何实现高并发的 service nginx start之后,然后输入#ps -ef|grep nginx,会发现Nginx有一个master进程和若干个worker进程,这些work ...

  6. 20191121-5 Scrum立会报告+燃尽图 01

    此作业要求参见https://edu.cnblogs.com/campus/nenu/2019fall/homework/10065 一.小组情况 组长:贺敬文组员:彭思雨 王志文 位军营 徐丽君队名 ...

  7. 字符串暴力枚举子序列求LCS

    题意: 求n个串里的LCS,长度相同时按照字典序排序 solution: 断环为链,二进制枚举子序列,压入vector,按照字典序排序 把出现次数为n的,压入第二个vector 输出最长的第二个vec ...

  8. LeetCode 44. 通配符匹配(Wildcard Matching)

    题目描述 给定一个字符串 (s) 和一个字符模式 (p) ,实现一个支持 '?' 和 '*' 的通配符匹配. '?' 可以匹配任何单个字符. '*' 可以匹配任意字符串(包括空字符串). 两个字符串完 ...

  9. Undo Segment/Undo Retention

    undo_retention简单定义,就是最多数据的最少保留时间.AUM模式下,undo_retention参数用于事务commit后undo数据保留的时间.单位为秒.这是个no guarantee的 ...

  10. nginx 反向代理实现负载均衡*配置实战

    重要点: 1配置反向代理多虚拟主机节点服务器 2经过反向代理后的节点服务器记录用户IP 3与反向代理配置相关的更多参数说明 4根据URL目录地址转发 (1)根据URL中的目录地址实现代理转发(动静分离 ...