小米oj 有多少个等差数列(动态规划)
有多少个等差数列?
序号:#20难度:困难时间限制:500ms内存限制:10M
描述
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。即对于数列S,它满足了(S[i]-S[i-1]) = d (i \gt 1)(S[i]−S[i−1])=d(i>1)。 显然,一个数字无法构成等差数列,而任意两个数字可以形成一个等差数列。 这里给出了一个长度为N (0 \lt N \lt 200)N(0<N<200)的数字序列,每个位置有一个整数(-100 \le \text{整数} \le 100)(−100≤整数≤100),需要找到这个数字序列里包含多少个等差数列,序列顺序固定,无需排序。 输入数据格式:\text{S[0] S[1] S[2] ... S[N]}S[0] S[1] S[2] ... S[N](以半角空格符分隔,N \gt 1N>1) 输出数据格式:等差数列数量 MM; 其中数列 SS 的项为整数
请注意时间复杂度的限制。
输入
输入一个数列[ 2 7 4 5 6 ],该数列包含等差数列: [ 2 7 ] [ 2 4 ] [ 2 5 ] [ 2 6 ] [ 7 4 ] [ 7 5 ] [ 7 6 ] [ 4 5 ] [ 4 6 ] [ 5 6 ] [ 2 4 6 ] [ 4 5 6 ]
输出
上例共包含12组等差数列,故应输出12
输入样例
2 7 4 5 6
3 3 3 3
复制样例
输出样例
12
11
思路:设dp[i][k]表示以a[i]为起点,k为公差的等差数列的个数。
转移方程为:if(a[j]+k==a[i])dp[j][k]+=(dp[i][k]+1); (j<i)
#include<bits/stdc++.h>
#include<stdio.h>
#include<iostream>
#include<cmath>
#include<math.h>
#include<queue>
#include<set>
#include<map>
#include<iomanip>
#include<algorithm>
#include<stack>
using namespace std;
#define inf 0x3f3f3f3f
typedef long long ll;
char buf[100000];
int a[205];
ll dp[205][405];
int main()
{
#ifndef ONLINE_JUDGE
//freopen("in.txt","r",stdin);
#endif // ONLINE_JUDGE
while(gets(buf))
{
memset(dp,0,sizeof(dp));
int v;
int n=0;
char *p=strtok(buf," ");
while(p)
{
sscanf(p,"%d",&v);
a[n++]=v;
p=strtok(NULL," ");
}
ll ans=0;
for(int k=-200;k<=200;k++)
{
for(int i=n-1;i>=0;i--)
{
for(int j=i-1;j>=0;j--)
{
if(a[j]+k==a[i])
dp[j][k+200]+=(dp[i][k+200]+1);
}
}
}
for(int i=0;i<n;i++)
{
for(int k=0;k<=400;k++)
{
ans+=dp[i][k];
}
}
cout<<ans<<endl;
}
return 0;
}
小米oj 有多少个等差数列(动态规划)的更多相关文章
- 小米OJ 有多少个等差数列
题目链接 https://code.mi.com/problem/list/view?id=20 代码 #include <bits/stdc++.h> using namespace s ...
- 小米oj 有多少个公差为2的等差数列
有多少个公差为 2 的等差数列 序号:#31难度:有挑战时间限制:1000ms内存限制:10M 描述 给出一个正整数N(2<= N <=10000000),统计有多少公差为2的正整数等差 ...
- [小米OJ] 10. 爬楼梯
dp 另: 小米oj上的测试样例是错的 ; ) function solution(line) { if (line == 0) return 0; if (line == 1) return 1; ...
- 小米 oj 硬币比赛(思维+动态规划)
硬币比赛 序号:#47难度:困难时间限制:1000ms内存限制:10M 描述 有 n 个不同价值的硬币排成一条线.有 A 与 B 两个玩家,指定由 A 开始轮流(A 先手,然后 B,然后再 A..) ...
- 【51Nod】1055 最长等差数列 动态规划
[题目]1055 最长等差数列 [题意]给定大小为n的互不不同正整数集合,求最长等差数列的长度.\(n \leq 10000\). [算法]动态规划 两个数之间的差是非常重要的信息,设\(f_{i,j ...
- 题解西电OJ (Problem 1005 -跳舞毯)--动态规划
Description zyf不小心得了一种怪病,为了维持一天的精力他必须不停跳动.于是他买了一条跳舞毯,每天跳上几小时.众所周知,跳舞毯是给定一个序列,让你在指定时间踏指定的按钮,但zyf似乎不怎么 ...
- 九度OJ 1500 出操队形 -- 动态规划(最长上升子序列)
题目地址:http://ac.jobdu.com/problem.php?pid=1500 题目描述: 在读高中的时候,每天早上学校都要组织全校的师生进行跑步来锻炼身体,每当出操令吹响时,大家就开始往 ...
- nyist oj 79 拦截导弹 (动态规划基础题)
拦截导弹 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描写叙述 某国为了防御敌国的导弹突击.发展中一种导弹拦截系统.可是这样的导弹拦截系统有一个缺陷:尽管它的第一发炮弹可以 ...
- 小米OJ刷题日志
虽然这OJ上的题比较水,但还是挺有意思的.关键是能赚钱 特别是提交方式 居然不支持C++,垃圾OJ 4. 最长连续数列 排序后dp 5. 找出旋转有序数列的中间值 写个排序就做完了. 6. 交叉队列 ...
随机推荐
- 数据结构C++实现-第一章 绪论
1.1 计算机与算法 1.1.3 起泡排序 void bubbleSort(int a[], int n) { for(bool sorted=false; !sorted; --n) { sorte ...
- Redis 消息队列 初体验
队列之生产者.消费者模式 using System; using System.Threading; using NServiceKit.Redis; namespace ConsoleApplica ...
- for循环中的闭包
// 问题1:判断下面一段代码运行的结果是什么? var data = [] for (var i = 0; i < 3; i++) { data[i] = function() { conso ...
- canvas-八卦图和时钟实现
八卦图: <body> canvas id="></canvas> <script> //获取到画布元素 let myCanvas = docume ...
- Redis缓存策略设计及常见问题
Redis缓存设计及常见问题 缓存能够有效地加速应用的读写速度,同时也可以降低后端负载,对日常应用的开发至关重要.下面会介绍缓存使用技巧和设计方案,包含如下内容:缓存的收益和成本分析.缓存更新策略的选 ...
- axios 简单二次封装
import axios from 'axios' import { Message } from 'element-ui'; // 设置baseURL //axios.defaults.baseUR ...
- Codeforces 845G Shortest Path Problem?
http://codeforces.com/problemset/problem/845/G 从顶点1dfs全图,遇到环则增加一种备选方案,环上的环不需要走到前一个环上作为条件,因为走完第二个环可以从 ...
- springboot升级2.0 fastjson报错? 2.0以上应该怎么整合fastjson?
SpringBoot2.0如何集成fastjson?在网上查了一堆资料,但是各文章的说法不一,有些还是错的,可能只是简单测试一下就认为ok了,最后有没生效都不知道.恰逢公司项目需要将JackSon换成 ...
- Linux ppp 数据收发流程
转:http://blog.csdn.net/yangzheng_yz/article/details/11526671 PPP (Point-to-Point)提供了一种标准的方法在点对点的连接上传 ...
- Istio技术与实践05:如何用istio实现流量管理
Istio是Google继Kubernetes之后的又一开源力作,主要参与的公司包括Google,IBM,Lyft等,它提供了完整的非侵入式的微服务治理解决方案,解决微服务的管理.网络连接以及安全管理 ...