UVA10294

POLYA定理的基本应用

题意:
有n个珠子围成的环,有t种颜色可以染这些珠子;
如果这个环可以旋转有几种办法;
如果这个环可以旋转,且可以翻转,有几种办法;

参考博客

刘汝佳的分析:

等价类计数问题。一共有两种置换,选择以及翻转。项链只有第一种置换,手镯则有两种置换。设所有珠子按逆时针编号0~n-1。

旋转置换:如果逆时针旋转i颗珠子的间距,则珠子0、i、2i、…构成一个循环。这个循环有n/gcd(i,n)个元素。根据对称性,所有循环的长度相同,因此一共有n/(n/gcd(i,n)) = gcd(i,n)个循环。该置换的不动点数为t^(gcd(i,n))。所有置换的不动点总数为a = sum{t^gcd(i,n) | i = 0,1,…,n - 1}。

翻转置换:分情况讨论。当n是奇数时,对称轴有n条,每条对称轴形成(n-1)/2个长为2的循环以及1个长为1的循环,即(n+1)/2个循环。这些置换的不动点总数是b=nt^((n+1)/2)。

当n是偶数时,有两种对称轴。穿过珠子的对称轴有n/2条,各形成n/2-1个长为2的循环,还形成两个长为1的循环;不穿过珠子的对称轴有n/2条,各形成n/2个长为2的循环。这些置换的不动点总数是b = n / 2 * (t ^ (n / 2 + 1) + t ^ (n / 2))。

根据Polya定理,项链总数为a/n,手镯总数是(a + b) / (2n)。

 #include<bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define first fi
#define second se
#define pw(x) (1ll << (x))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define rep(i,l,r) for(int i=(l);i<(r);i++)
#define per(i,r,l) for(int i=(r);i>=(l);i--)
#define FOR(i,l,r) for(int i=(l);i<=(r);i++)
#define eps 1e-9
#define PIE acos(-1)
#define cl(a,b) memset(a,b,sizeof(a))
#define fastio ios::sync_with_stdio(false);cin.tie(0);
#define lson l , mid , ls
#define rson mid + 1 , r , rs
#define ls (rt<<1)
#define rs (ls|1)
#define INF 0x3f3f3f3f
#define LINF 0x3f3f3f3f3f3f3f3f
#define freopen freopen("in.txt","r",stdin);
#define cfin ifstream cin("in.txt");
#define lowbit(x) (x&(-x))
#define sqr(a) a*a
#define ll long long
#define ull unsigned long long
#define vi vector<int>
#define pii pair<int, int>
#define dd(x) cout << #x << " = " << (x) << ", "
#define de(x) cout << #x << " = " << (x) << "\n"
#define endl "\n"
using namespace std;
//**********************************
int n,t;
ll f[];
//**********************************
void get(int n)
{
f[]=;
FOR(i,,n)f[i]=f[i-]*t;
}
inline int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
}
//**********************************
int main()
{
while(~scanf("%d%d",&n,&t)){
get(n);
ll a=,b=;
rep(i,,n)a+=f[gcd(i,n)];
if(n%==)b=n*(f[(n+)/]);
else b=n/*(f[n/+]+f[n/]);
printf("%lld %lld\n",a/n,(a+b)//n);
}
return ;
}

polya置换的更多相关文章

  1. [ZOJ1961]Let it Bead

    Description "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. ...

  2. 【uva 10294】 Arif in Dhaka (First Love Part 2) (置换,burnside引理|polya定理)

    题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. ...

  3. [POJ 2888]Magic Bracelet[Polya Burnside 置换 矩阵]

    也许更好的阅读体验 \(\mathcal{Description}\) 大意:给一条长度为\(n\)的项链,有\(m\)种颜色,另有\(k\)条限制,每条限制为不允许\(x,y\)颜色连在一起.要求有 ...

  4. HDU 1817Necklace of Beads(置换+Polya计数)

    Necklace of Beads Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  5. polya/burnside 学习

    参考链接: http://www.cnblogs.com/hankers/archive/2012/08/03/2622231.html http://blog.csdn.net/raalghul/a ...

  6. 【转】Polya定理

    转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...

  7. 【群论】polya定理

    对Polya定理的个人认识     我们先来看一道经典题目:     He's Circles(SGU 294)         有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不 ...

  8. POJ 1286 Necklace of Beads(Polya原理)

    Description Beads of red, blue or green colors are connected together into a circular necklace of n ...

  9. poj 2409 Let it Bead && poj 1286 Necklace of Beads(Polya定理)

    题目:http://poj.org/problem?id=2409 题意:用k种不同的颜色给长度为n的项链染色 网上大神的题解: 1.旋转置换:一个有n个旋转置换,依次为旋转0,1,2,```n-1. ...

随机推荐

  1. luogu P5023 填数游戏

    luogu loj 被这道题送退役了 题是挺有趣的,然而可能讨论比较麻烦,肝了2h 又自闭了,鉴于CSP在即,就只能先写个打表题解了 下面令\(n<m\),首先\(n=1\)时答案为\(2^m\ ...

  2. javabean转成json字符首字母大写

    今天写接口的时候有个需求将接口返回的json字符串首字母大写:{"SN":"","Result":""}格式, 只需要在 ...

  3. oracle中查询表中的触发器,关闭启用操作

    1.查询指定表中有哪些触发器 select * from all_triggers WHERE table_name='表名' 2.禁用指定表中所有的触发器 alter table table_nam ...

  4. redis 交集、并集、差集

    sinter .sunion .sdiff redis 支持 Set集合的数据存储,其中有三个比较特殊的方法: sinter key [key …] 返回一个集合的全部成员,该集合是所有给定集合的交集 ...

  5. element ui的照片墙 默认显示照片

    参考地址: element ui的照片墙 默认显示照片 照片显示的数据格式是:[{name: '', url: ''}],:file-list=""默认显示的图片 实际项目开发中需 ...

  6. VUE【二、选项和生命周期】

    vue对象,类似于一个viewModel,是处理页面显示的数据模型的对象 其中会有很多选项,以下为较常用的: 选项 1.data-数据 vue实例会代理其data对象里的所有属性 2.methods- ...

  7. EasyUI中取的DataGrid中选中行数据

    dataGrid中显示列:ItemID,ItemCode,ItemName,Note 一.选中一行 var selRow = $('#dataGrid').datagrid('getSelected' ...

  8. unomp 矿池运行问题随记

    经过大量的实践,遇到的问题或经验如下: 1.单机运行多矿池时,单机CPU核心数 成为性能瓶颈,运行两个月后,有部分用户反映 矿机速率只有以前的一半. 2.Dash 等可以自行报块的矿池,每个块的股份比 ...

  9. String 属于基础的数据类型吗?(未完成)

    String 属于基础的数据类型吗?(未完成)

  10. Python怎么检验数据的正态分布

    在对数据建模前,很多时候我们需要对数据做正态性检验,进而通过检验结果确定下一步的分析方案.下面介绍 Python 中常用的几种正态性检验方法: scipy.stats.kstest kstest 是一 ...