polya置换
POLYA定理的基本应用
题意:
有n个珠子围成的环,有t种颜色可以染这些珠子;
如果这个环可以旋转有几种办法;
如果这个环可以旋转,且可以翻转,有几种办法;
刘汝佳的分析:
等价类计数问题。一共有两种置换,选择以及翻转。项链只有第一种置换,手镯则有两种置换。设所有珠子按逆时针编号0~n-1。
旋转置换:如果逆时针旋转i颗珠子的间距,则珠子0、i、2i、…构成一个循环。这个循环有n/gcd(i,n)个元素。根据对称性,所有循环的长度相同,因此一共有n/(n/gcd(i,n)) = gcd(i,n)个循环。该置换的不动点数为t^(gcd(i,n))。所有置换的不动点总数为a = sum{t^gcd(i,n) | i = 0,1,…,n - 1}。
翻转置换:分情况讨论。当n是奇数时,对称轴有n条,每条对称轴形成(n-1)/2个长为2的循环以及1个长为1的循环,即(n+1)/2个循环。这些置换的不动点总数是b=nt^((n+1)/2)。
当n是偶数时,有两种对称轴。穿过珠子的对称轴有n/2条,各形成n/2-1个长为2的循环,还形成两个长为1的循环;不穿过珠子的对称轴有n/2条,各形成n/2个长为2的循环。这些置换的不动点总数是b = n / 2 * (t ^ (n / 2 + 1) + t ^ (n / 2))。
根据Polya定理,项链总数为a/n,手镯总数是(a + b) / (2n)。
#include<bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define first fi
#define second se
#define pw(x) (1ll << (x))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define rep(i,l,r) for(int i=(l);i<(r);i++)
#define per(i,r,l) for(int i=(r);i>=(l);i--)
#define FOR(i,l,r) for(int i=(l);i<=(r);i++)
#define eps 1e-9
#define PIE acos(-1)
#define cl(a,b) memset(a,b,sizeof(a))
#define fastio ios::sync_with_stdio(false);cin.tie(0);
#define lson l , mid , ls
#define rson mid + 1 , r , rs
#define ls (rt<<1)
#define rs (ls|1)
#define INF 0x3f3f3f3f
#define LINF 0x3f3f3f3f3f3f3f3f
#define freopen freopen("in.txt","r",stdin);
#define cfin ifstream cin("in.txt");
#define lowbit(x) (x&(-x))
#define sqr(a) a*a
#define ll long long
#define ull unsigned long long
#define vi vector<int>
#define pii pair<int, int>
#define dd(x) cout << #x << " = " << (x) << ", "
#define de(x) cout << #x << " = " << (x) << "\n"
#define endl "\n"
using namespace std;
//**********************************
int n,t;
ll f[];
//**********************************
void get(int n)
{
f[]=;
FOR(i,,n)f[i]=f[i-]*t;
}
inline int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
}
//**********************************
int main()
{
while(~scanf("%d%d",&n,&t)){
get(n);
ll a=,b=;
rep(i,,n)a+=f[gcd(i,n)];
if(n%==)b=n*(f[(n+)/]);
else b=n/*(f[n/+]+f[n/]);
printf("%lld %lld\n",a/n,(a+b)//n);
}
return ;
}
polya置换的更多相关文章
- [ZOJ1961]Let it Bead
Description "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. ...
- 【uva 10294】 Arif in Dhaka (First Love Part 2) (置换,burnside引理|polya定理)
题目来源:UVa 10294 Arif in Dhaka (First Love Part 2) 题意:n颗珠子t种颜色 求有多少种项链和手镯 项链不可以翻转 手镯可以翻转 [分析] 要开始学置换了. ...
- [POJ 2888]Magic Bracelet[Polya Burnside 置换 矩阵]
也许更好的阅读体验 \(\mathcal{Description}\) 大意:给一条长度为\(n\)的项链,有\(m\)种颜色,另有\(k\)条限制,每条限制为不允许\(x,y\)颜色连在一起.要求有 ...
- HDU 1817Necklace of Beads(置换+Polya计数)
Necklace of Beads Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
- polya/burnside 学习
参考链接: http://www.cnblogs.com/hankers/archive/2012/08/03/2622231.html http://blog.csdn.net/raalghul/a ...
- 【转】Polya定理
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...
- 【群论】polya定理
对Polya定理的个人认识 我们先来看一道经典题目: He's Circles(SGU 294) 有一个长度为N的环,上面写着“X”和“E”,问本质不同的环有多少个(不 ...
- POJ 1286 Necklace of Beads(Polya原理)
Description Beads of red, blue or green colors are connected together into a circular necklace of n ...
- poj 2409 Let it Bead && poj 1286 Necklace of Beads(Polya定理)
题目:http://poj.org/problem?id=2409 题意:用k种不同的颜色给长度为n的项链染色 网上大神的题解: 1.旋转置换:一个有n个旋转置换,依次为旋转0,1,2,```n-1. ...
随机推荐
- fragment概念理解
fragment概念理解知识,fragment概念理解图片 fragment概念理解内容,fragment概念理介绍,fragment概念理正文 Fragment是Android honeycomb ...
- 好好讲一讲,到底什么是Java高级架构师!
一. 什么是架构师 曾经有这么个段子: 甲:我已经应聘到一家中型软件公司了,今天上班的时候,全公司的人都来欢迎我. 乙:羡慕ing,都什么人来了? 甲:CEO.COO.CTO.All of 程序员,还 ...
- MySQL数据库常见问题1:关于 “ MySQL Installer is running in Community mode ” 的解决办法
现象: MYSQL在安装完成后,系统能正常运行,但是第二天出现了如下一个提示框,如下图: 给个人人都看得懂的如下图: 解决办法: 这个是新版本MySQL服务自带的一个定时任务,每天23: ...
- Delphi 执行线程对象
- dropbear源码编译安装及AIDE软件监控
ssh协议的另一个实现:dropbear源码编译安装:• 1.安装开发包组:yum groupinstall “Development tools”• 2.下载 -2017.75.tar.bz2 ...
- Cacti-0.8.8b详细安装及配置步骤
1. Cacti环境安装 1.1 安装LAMP环境 安装LAMP环境,当然,如果你有兴趣可以采用编译,我线上Mysql是编译的,其余是yum安装的.在这次实验采用yum安装. 关闭i ...
- PAT Basic 1072 开学寄语 (20 分)
下图是上海某校的新学期开学寄语:天将降大任于斯人也,必先删其微博,卸其 QQ,封其电脑,夺其手机,收其 ipad,断其 wifi,使其百无聊赖,然后,净面.理发.整衣,然后思过.读书.锻炼.明智. ...
- 踏步-java工具类
/** * @Title:removeDuplicate * @author:踏步 * @date:2019年5月23日 下午2:31:40 * @Description:TODO 去除list的重复 ...
- go mod 解决 Go 语言的包依赖问题
转:https://testerhome.com/topics/16980 https://testerhome.com/ -------------------------------------- ...
- Git 分支开发规范
您必须知道的 Git 分支开发规范 Git 是目前最流行的源代码管理工具. 为规范开发,保持代码提交记录以及 git 分支结构清晰,方便后续维护,现规范 git 的相关操作. 分支管理 分支命名 ma ...