原文  https://juejin.im/post/5d09f2d56fb9a07ec7551fb0

HashMap在日常开发中基本是天天见的,而且都知道什么时候需要用HashMap,根据Key存取Value,但是存和取的时候那些操作却是很少去研究。同时在面试中也是面试官们必问的。 以下是基于JDK1.8

正文

先看看HashMap的结构图:

1. 先来认识一下HashMap中定义的一些需要了解的成员变量

// hashMap数组的初始容量 16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 负载因子 0.75f;
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 树形化阈值 8
static final int TREEIFY_THRESHOLD = 8;
// 解除树形化阈值 6
static final int UNTREEIFY_THRESHOLD = 6;
// 树形化的另一条件 Map数组的长度阈值 64
static final int MIN_TREEIFY_CAPACITY = 64
// 这个就是hashMap的内部数组了,而Node则是链表节点对象。
transient Node<K,V>[] table;
// 数组扩容阈值。
int threshold;

initialCapacity 数组的初始容量为16。可以在构造方法中指定。必须是2的幂次方。(16 → 32 → 64 ...)

loadFactor   加载因子 0.75f。 所谓的加载因子就是HashMap的容量达到0.75时的时候会试试扩容 resize() , (例:假设有一个 HashMap 的初始容量为 16 ,那么扩容的阀值就是 0.75 * 16 = 12 。也就是说,在你打算存入第 13 个值的时候,HashMap 会先执行扩容)。加载因子也能通过构造方法中指定,如果指定大于1,则数组不会扩容,牺牲了性能不过提升了内存。

TREEIFY_THRESHOLD 树形化阈值。当链表的节点个数大于等于这个值时,会将链表转化为红黑树。

UNTREEIFY_THRESHOLD 解除树形化阈值。当链表的节点个数小于等于这个值时,会将红黑树转换成普通的链表。

MIN_TREEIFY_CAPACITY 树形化阈值的第二条件。当数组的长度小于这个值时,就算树形化阈达标,链表也不会转化为红黑树,而是优先扩容数组resize()。

threshold 数组扩容阈值。即:HashMap数组总容量 * 加载因子。当前容量大于或等于该值时会执行扩容** resize() **。扩容的容量为当前 HashMap 总容量的两倍。比如,当前 HashMap 的总容量为 16 ,那么扩容之后为 32 。

2. 继承关系

// table 内部数组是节点类型
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next; //下一个节点
//省略...
}

拉链法的散列表是通过链表解决碰撞问题的,所以HashMap的内部数组是节点类型。 hash 值是经过 hash() 方法处理过的hashCode,也就是 数组的索引 bucket ,为了使hashCode分布更加随机。

java.util.HashMap<K, V>.Node<K, V>
java.util.LinkedMap<K, V>.Entry<K, V>
java.util.HashMap<K, V>.TreeNOde<K, V>

TreeNode是Node是子类,继承关系如下:Node是单向链表节点,Entry是双向链表节点,TreeNode是红黑树节点。TreeNode的代码400多行都是写的红黑树。这个有点难度..可以自行去了解。

3. 先对HashMap的简单总结

HashMap是基于拉链法实现的一个散列表,内部由数组和链表和红黑树实现。

  1. 数组的初始容量为16,而容量是以2的次方扩充的,一是为了提高性能使用足够大的数组,二是为了能使用位运算代替取模预算(据说提升了5~8倍)。

  2. 数组是否需要扩充是通过负载因子判断的,如果当前元素个数为数组容量的0.75时,就会扩充数组。这个0.75就是默认的负载因子,可由构造传入。我们也可以设置大于1的负载因子,这样数组就不会扩充,牺牲性能,节省内存。

  3. 为了解决碰撞,数组中的元素是单向链表类型。当链表长度到达一个阈值时(7或8),会将链表转换成红黑树提高性能。而当链表长度缩小到另一个阈值时(6),又会将红黑树转换回单向链表提高性能,这里是一个平衡点。

  4. 对于第三点补充说明,检查链表长度转换成红黑树之前,还会先检测当前数组数组是否到达一个阈值(64),如果没有到达这个容量,会放弃转换,先去扩充数组。所以上面也说了链表长度的阈值是7或8,因为会有一次放弃转换的操作。

4. 深入了解源码

4.1 构造方法

// 默认数组初始容量为16,负载因子为0.75f
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
// 指定数组的初始容量
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
// 指定数组的初始容量 和 负载因子
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY; // NaN:Not a Number。例如给-1开方就会得到NaN。
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor; // 这个方法可以将任意一个整数转换成2的次方。
// 例如输入10,则会返回16。
// 另外,有人可能疑惑,不是说threshold是 数组容量 * loadFactor得到的吗?
// 是的,在第一次put操作,扩充数组时,会将这个threshold作为数组容量,然后再重新计算这个值。
this.threshold = tableSizeFor(initialCapacity);
}

在使用指定数组的初始容量时上面说过,数组容量必须是2的次方。所以就需要通过算法将我们给定的数值转换成2的次方。

// 这个方法可以将任意一个整数转换成2的次方。
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

相关的位运算这里不做讲解。想了解的可以自己去查阅资料。

4.2 数组的索引 bucket

HashMap采用hash算法来决定集合中元素的存储位置,每当系统初始化HashMap时,会创建一个为** capacity 的数组,这个数组里面可以存储元素的位置被成为 桶(bucket) , 每个 bucket**都有其指定索引。可以根据该索引快速访问存储的元素。

public V put(K key, V value) {
// 传入的key经过了 hash(key) 方法
return putVal(hash(key), key, value, false, true);
}
// 特殊处理的hashCode
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

上面的代码只是用hashCode的高16位与低16位进行异或运算。 hash() 方法就是将hashCode进一步的混淆,增加其 “随机度” ,试 图减少插入HashMap时的hash冲突 。

在putVal方法中,有一行这样的代码

if ((p = tab[i = (n - 1) & hash]) == null)

i = (n - 1) & hash ,n是数组长度,hash就是通过hash()方法进行高低位异或运算得出来的hash值。 这个表达式就是hash值的取模运算,上面已经说过当除数为2的次方时,可以用与运算提高性能。

4.3 HashMap.put(k,v)

public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
} // onlyIfAbsent:当存入键值对时,如果该key已存在,是否覆盖它的value。false为覆盖,true为不覆盖 参考putIfAbsent()方法。
// evict:用于子类LinkedHashMap。
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
HashMap.Node<K,V>[] tab; // tab:内部数组
HashMap.Node<K,V> p; // p:hash对应的索引位中的首节点
int n, i; // n:内部数组的长度 i:hash对应的索引位 // 首次put时,内部数组为空,扩充数组。
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 计算数组索引,获取该索引位置的首节点,如果为null,添加一个新的节点
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
HashMap.Node<K,V> e; K k;
// 如果首节点的key和要存入的key相同,那么直接覆盖value的值。
if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 如果首节点是红黑树的,将键值对插添加到红黑树
else if (p instanceof HashMap.TreeNode)
e = ((HashMap.TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 此时首节点为链表,如果链表中存在该键值对,直接覆盖value。
// 如果不存在,则在末端插入键值对。然后判断链表是否大于等于7,尝试转换成红黑树。
// 注意此处使用“尝试”,因为在treeifyBin方法中还会判断当前数组容量是否到达64,
// 否则会放弃次此转换,优先扩充数组容量。
else {
// 走到这里,hash碰撞了。检查链表中是否包含key,或将键值对添加到链表末尾
for (int binCount = 0; ; ++binCount) {
// p.next == null,到达链表末尾,添加新节点,如果长度足够,转换成树结构。
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 检查链表中是否已经包含key
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
} // 覆盖value的方法。
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount; // fail-fast机制 // 如果元素个数大于阈值,扩充数组。
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

细心看注释部分,总结来说就是以下几个步骤:

1.检查数组是否为空,执行resize()扩充;

2.通过hash值计算数组索引,获取该索引位的首节点。

3.如果首节点为null** (没发生碰撞) ,直接添加节点到该索引位 (bucket) 

4.如果首节点不为null (发生碰撞) ,那么有3种情况 ① key和首节点的key相同,覆盖old value (保证key的唯一性) **;否则执行②或③ ② 如果首节点是红黑树节点(TreeNode),将键值对添加到红黑树。 ③ 如果首节点是链表,将键值对添加到链表。添加之后会判断链表长度是否到达TREEIFY_THRESHOLD - 1这个阈值,“尝试”将链表转换成红黑树。

5.最后判断当前元素个数是否大于threshold,扩充数组。

// 把链表转换为红黑色
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
// 如果当前数组容量太小(小于64),放弃转换,扩充数组。
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
} else if ((e = tab[index = (n - 1) & hash]) != null) {
// 将链表转成红黑树...
}
}

HashMap在jdk1.8之后引入了红黑树的概念,表示若桶中链表元素超过8时,会自动转化成红黑树;若桶中元素小于等于6时,树结构还原成链表形式。

红黑树的平均查找长度是log(n),长度为8,查找长度为log(8)=3,链表的平均查找长度为n/2,当长度为8时,平均查找长度为8/2=4,这才有转换成树的必要;链表长度如果是小于等于6,6/2=3,虽然速度也很快的,但是转化为树结构和生成树的时间并不会太短。

以6和8来作为平衡点是因为,中间有个差值7可以防止链表和树之间频繁的转换。假设,如果设计成链表个数超过8则链表转换成树结构,链表个数小于8则树结构转换成链表,如果一个HashMap不停的插入、删除元素,链表个数在8左右徘徊,就会频繁的发生树转链表、链表转树,效率会很低。

概括起来就是: 链表:如果元素小于8个,查询成本高,新增成本低,红黑树:如果元素大于8个,查询成本低,新增成本高。

4.4 resize() 数组扩容

final HashMap.Node<K,V>[] resize() {
HashMap.Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
// 如果数组已经是最大长度,不进行扩充。
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 否则数组容量扩充一倍。(2的N次方)
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
// 如果数组还没创建,但是已经指定了threshold(这种情况是带参构造创建的对象),threshold的值为数组长度
// 在 "构造函数" 那块内容进行过说明。
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
// 这种情况是通过无参构造创建的对象
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 可能是上面newThr = oldThr << 1时,最高位被移除了,变为0。
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr; // 到了这里,新的数组长度已经被计算出来,创建一个新的数组。
@SuppressWarnings({"rawtypes","unchecked"})
HashMap.Node<K,V>[] newTab = (HashMap.Node<K,V>[])new HashMap.Node[newCap];
table = newTab; // 下面代码是将原来数组的元素转移到新数组中。问题在于,数组长度发生变化。
// 那么通过hash%数组长度计算的索引也将和原来的不同。
// jdk 1.7中是通过重新计算每个元素的索引,重新存入新的数组,称为rehash操作。
// 这也是hashMap无序性的原因之一。而现在jdk 1.8对此做了优化,非常的巧妙。
if (oldTab != null) { // 遍历原数组
for (int j = 0; j < oldCap; ++j) {
// 取出首节点
HashMap.Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
// 如果链表只有一个节点,那么直接重新计算索引存入新数组。
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
// 如果该节点是红黑树,执行split方法,和链表类似的处理。
else if (e instanceof HashMap.TreeNode)
((HashMap.TreeNode<K,V>)e).split(this, newTab, j, oldCap); // 此时节点是链表
else { // preserve order
// loHead,loTail为原链表的节点,索引不变。
HashMap.Node<K,V> loHead = null, loTail = null;
// hiHeadm, hiTail为新链表节点,原索引 + 原数组长度。
HashMap.Node<K,V> hiHead = null, hiTail = null;
HashMap.Node<K,V> next; // 遍历链表
do {
next = e.next;
// 新增bit为0的节点,存入原链表。
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 新增bit为1的节点,存入新链表。
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 原链表存回原索引位
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 新链表存到:原索引位 + 原数组长度
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}

扩充数组不单单只是让数组长度翻倍,将原数组中的元素直接存入新数组中这么简单。

因为元素的索引是通过hash&(n - 1)得到的,那么数组的长度由n变为2n,重新计算的索引就可能和原来的不一样了。

在jdk1.7中,是通过遍历每一个元素,每一个节点,重新计算他们的索引值,存入新的数组中,称为rehash操作。

而java1.8对此进行了一些优化,没有了rehash操作。因为当数组长度是通过2的次方扩充的,那么会发现以下规律:

元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。因此,在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”。

先计算新数组的长度和新的阈值(threshold),然后将旧数组的内容迁移到新数组中,和1.7相比不需要执行rehash操作。因为以2次幂扩展的数组可以简单通过新增的bit判断索引位。

4.5 HashMap.get(k)

public V get(Object key) {
Node<K,V> e;
// 也会获取节点时也调用了hash()方法
return (e = getNode(hash(key), key)) == null ? null : e.value;
} final Node<K,V> getNode(int hash, Object key) {
// tab:内部数组 first: 索引位首节点 n: 数组长度 k: 索引位首节点的key
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// 数组不为null 数组长度大于0 索引位首节点不为null
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 如果索引位首节点的hash==key的hash 或者 key和索引位首节点的k相同
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
// 返回索引位首节点(值对象)
return first;
if ((e = first.next) != null) {
// 如果是红黑色则到红黑树中查找
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
// 发送碰撞 key.equals(k)
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}

总结起来就是以下步骤

1.检查数组是否为null 和 索引位首节点** (bucket的第一个节点) 是否为null

2.如果索引节点的hash==key的hash 或者 key和索引节点的k相同则直接返回 (bucket的第一个节点) **

3.如果是红黑色则到红黑树查找

4.如果有冲突,则通过key.equals(k)查找

5.都没找到就返回null

5. 总结 (面试相关)

1、你用过HashMap吗?” “什么是HashMap?你为什么用到它?

呃..

2、我们能否让HashMap同步?

Map m = Collections.synchronizeMap(hashMap);

3、你知道HashMap的工作原理吗?

查看第序号3的总结。

4、你知道HashMap的put()方法和get()方法的工作原理吗??

put() 查看序号4.3的总结。 get() 查看序号4.5的总结。

5、当两个对象的hashcode相同会发生什么?

两个对象的hashCode相同所以它们的bucket位置相同,会发生hash碰撞。HashMap使用链表存储对象,这个Entry会存储在链表中,存储时会检查链表中是否包含key (key != null && key.equals(k) ,或将键值对添加到链表尾部。如果链表长度大于或等于8,链表转换红黑树 ...

6、如果两个键的hashcode相同,你如何获取值对象?

两个对象的hashCode相同所以它们的bucket位置相同,找到bucket位置之后,会调用keys.equals()方法去找到链表中正确的节点 (key != null && key.equals(k) 

7、怎么减少碰撞?

使用final修饰的对象、或不可变的对象作为键,使用(Integer、String)(是不可变、final的,而且已经重写了equals和hashCode方法)这样的wrapper类作为键是非常好的,(我们可以使用自定义的对象作为键吗?答:当然可以,只要它遵守了equals和hashCode方法定义规则,并且当对象插入到Map中之后将不会再改变。)

8、如果HashMap的大小超过了负载因子(load factor)定义的容量,怎么办?

会调用** resize() **进行数组扩容。

9、你了解重新调整HashMap大小存在什么问题吗?

当多线程的情况下,可能产生条件竞争。

因为如果两个线程都发现HashMap需要重新调整大小了,它们会同时试着调整大小。在调整大小的过程中,存储在链表中的元素的次序会反过来,因为移动到新的bucket位置的时候,HashMap并不会将元素放在链表的尾部,而是放在头部,这是为了避免尾部遍历(tail traversing)。如果条件竞争发生了,那么就死循环了。这个时候,你可以质问面试官,为什么这么奇怪,要在多线程的环境下使用HashMap呢?:)

10、HashMap是非线程安全的,那么原因是什么呢?(HashMap的死锁)

由于HashMap的容量是有限的,如果HashMap中的数组的容量很小,假如只有2个,那么如果要放进10个keys的话,碰撞就会非常频繁,此时一个O(1)的查找算法,就变成了链表遍历,性能变成了O(n),这是Hash表的缺陷。

为了解决这个问题,HashMap设计了一个阈值,其值为容量的0.75,当HashMap所用容量超过了阈值后,就会自动扩充其容量。

在多线程的情况下,当重新调整HashMap大小的时候,就会存在条件竞争,因为如果两个线程都发现HashMap需要重新调整大小了,它们会同时试着调整大小。在调整大小的过程中,存储在链表中的元素的次序会反过来,因为移动到新的bucket位置的时候,HashMap并不会将元素放在链表的尾部,而是放在头部,这是为了避免尾部遍历。如果条件竞争发生了,那么就会产生死循环了。  (又绕回了上一个问题 :)

11、影响HashMap性能的因素?

  • 负载因子。

  • 哈希值;理想情况是均匀的散列到各个桶。 一般HashMap使用String类型作为key,而String类重写了hashCode函数。

一文搞定HashMap的实现原理和面试的更多相关文章

  1. 一文搞定 SonarQube 接入 C#(.NET) 代码质量分析

    1. 前言 C#语言接入Sonar代码静态扫描相较于Java.Python来说,相对麻烦一些.Sonar检测C#代码时需要预先编译,而且C#代码必须用MSbuid进行编译,如果需要使用SonarQub ...

  2. 一文搞定MySQL的事务和隔离级别

    一.事务简介 事务是数据库管理系统执行过程中的一个逻辑单位,由一个有限的数据库操作序列构成. 一个数据库事务通常包含了一个序列的对数据库的读/写操作.它的存在包含有以下两个目的: 为数据库操作序列提供 ...

  3. 一文搞定scrapy爬取众多知名技术博客文章保存到本地数据库,包含:cnblog、csdn、51cto、itpub、jobbole、oschina等

    本文旨在通过爬取一系列博客网站技术文章的实践,介绍一下scrapy这个python语言中强大的整站爬虫框架的使用.各位童鞋可不要用来干坏事哦,这些技术博客平台也是为了让我们大家更方便的交流.学习.提高 ...

  4. 一文搞定Spring Boot + Vue 项目在Linux Mysql环境的部署(强烈建议收藏)

    本文介绍Spring Boot.Vue .Vue Element编写的项目,在Linux下的部署,系统采用Mysql数据库.按照本文进行项目部署,不迷路. 1. 前言 典型的软件开发,经过" ...

  5. 【转载】HashMap底层实现原理及面试问题

    ①HashMap的工作原理 HashMap基于hashing原理,我们通过put()和get()方法储存和获取对象.当我们将键值对传递给put()方法时,它调用键对象的hashCode()方法来计算h ...

  6. HashMap底层实现原理及面试问题

    ①HashMap的工作原理 HashMap基于hashing原理,我们通过put()和get()方法储存和获取对象.当我们将键值对传递给put()方法时,它调用键对象的hashCode()方法来计算h ...

  7. HashMap底层实现原理及面试常见问题

    HashMap底层源码分析 1.HashMap底层采用的存储结构 1.在JDK1.7及之前采用的存储结构是数组+链表 2.到了JDK1.8之后采用的是数组+链表+红黑树 2.HashMap实现的原理 ...

  8. 一文搞定FastDFS分布式文件系统配置与部署

    Ubuntu下FastDFS分布式文件系统配置与部署 白宁超 2017年4月15日09:11:52 摘要: FastDFS是一个开源的轻量级分布式文件系统,功能包括:文件存储.文件同步.文件访问(文件 ...

  9. 21.SpringCloud实战项目-后台题目类型功能(网关、跨域、路由问题一文搞定)

    SpringCloud实战项目全套学习教程连载中 PassJava 学习教程 简介 PassJava-Learning项目是PassJava(佳必过)项目的学习教程.对架构.业务.技术要点进行讲解. ...

随机推荐

  1. html和css的一些常用标签使用

    HTML(HyperText Mark-up Language)超文本标签语言 <!DOCTYPE html> <!--声明这是一个html文档--> <html> ...

  2. 2.Vue调试工具vue-devtools的安装步骤和使用

    1.安装步骤: 打开谷歌浏览器设置 -->扩展程序 -->勾选开发者模式 --->加载已解压的扩展程序 --->选择“chrome扩展”文件夹即可:

  3. pyecharts各省人口GDP可视化分析

    版权声明:本文为博主原创文章,转载 请注明出处:https://blog.csdn.net/sc2079/article/details/82503569 9月9日更:本篇博客数据下载:链接:http ...

  4. mongoDB的基本操作之数据更新多条数据

    在默认情况下,update会更新第一条找到的数据,我们做个实验,插入3条c为1的数据 db.test_collection.insert({c:1}) 然后我们find的一下 db.test_coll ...

  5. Unknown initial character set index '255' received from server. Initial client character 解决方法

    Unknown initial character set index '255' received from server. Initial client character set can be ...

  6. 传说中Python最难理解的点,看这完篇就够了

    本文转载自简书,作者为菜鸟,感谢作者的辛苦付出. 这不是我第一次学Python入门课,去年.前年我都学过Python入门.所以文章的标题一点都没有标题党的意思.但是整个入门篇还有一个最难的东西没有讲, ...

  7. JAVA遇见HTML——JSP篇(JavaBeans)

    1.像使用普通java类一样,创建javabean实例,利用构造方法创建实例 跟表单关联,“*”表示根据名称来进行匹配,就是根据表单所提交过来的参数的名字和Javabean当中的属性名字来进行一一匹配 ...

  8. Java集合--Iterator和Enumeration比较

    转载请注明出处:http://www.cnblogs.com/skywang12345/admin/EditPosts.aspx?postid=3311275 第1部分 Iterator和Enumer ...

  9. 2、细节&Class对象

    2.细节&Class对象 class Class{ 提供获取字节码文件中的内容. 比如: 名称,字段,构造函数,一般函数 } 该类就可以获取字节码文件中的所有内容,那么反射就是依靠该类完成的. ...

  10. Nginx:Nginx概要

    简介 nginx是俄罗斯开源的HTTP和代理服务,也可以作邮件服务器. 核心功能: 1.正向代理:客户机的请求先到达nginx,再由nginx代理访问互联网资源 2.反向代理:客户机请求互联网,到达n ...