无监督异常检测之LSTM组成的AE
我本来就是处理时间序列异常检测的,之前用了全连接层以及CNN层组成的AE去拟合原始时间序列,发现效果不佳。当利用LSTM组成AE去拟合时间序列时发现,拟合的效果很好。但是,利用重构误差去做异常检测这条路依旧不通,因为发现异常曲线的拟合效果也很好……算了,这次先不打算做时间序列异常检测了。在这里把“基于LSTM的auto-encoder”的代码分享出来。
代码参考了Jason Brownlee大佬修改的:具体链接我找不到了,当他的博客我还能找到,感兴趣自己翻一翻,记得在LSTM网络那一章
https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/
from keras.layers import Input, Dense, LSTM
from keras.models import Model
from keras import backend as K
import numpy as np
from pandas import read_csv
from matplotlib import pyplot
import numpy from numpy import array
from keras.models import Sequential
from keras.layers import RepeatVector
from keras.layers import TimeDistributed
from keras.utils import plot_model #导入数据,前8000个正常样本,剩下的样本包括正常和异常时间序列,每个样本是1行48列
dataset = read_csv('randperm_zerone_Dataset.csv')
values = dataset.values
XY= values
n_train_hours1 =7000
n_train_hours3 =8000
trainX=XY[:n_train_hours1,:]
validX =XY[n_train_hours1:n_train_hours3, :]
testX =XY[n_train_hours3:, :]
train3DX = trainX.reshape((trainX.shape[0], trainX.shape[1],1))
valid3DX =validX.reshape((validX.shape[0], validX.shape[1],1))
test3DX = testX.reshape((testX.shape[0],testX.shape[1],1))
# 编码器
sequence = train3DX
# reshape input into [samples, timesteps, features]
n_in = 48
# define model
model = Sequential()
model.add(LSTM(100, activation='relu', input_shape=(n_in,1)))
model.add(RepeatVector(n_in))
model.add(LSTM(100, activation='relu', return_sequences=True))
model.add(TimeDistributed(Dense(1)))
model.compile(optimizer='adam', loss='mse')
model.summary()
# fit model
history=model.fit(train3DX, train3DX, shuffle=True,epochs=300,validation_data=(valid3DX, valid3DX))
pyplot.plot(history.history['loss'], label='train')
pyplot.plot(history.history['val_loss'], label='valid')
pyplot.legend()
pyplot.show()
# demonstrate recreation
yhat = model.predict(sequence)
ReconstructedData=yhat.reshape((yhat.shape[0], -1))
numpy.savetxt("ReconstructedData.csv", ReconstructedData, delimiter=',')
无监督异常检测之LSTM组成的AE的更多相关文章
- 无监督异常检测之卷积AE和卷积VAE
尝试用卷积AE和卷积VAE做无监督检测,思路如下: 1.先用正常样本训练AE或VAE 2.输入测试集给AE或VAE,获得重构的测试集数据. 3.计算重构的数据和原始数据的误差,如果误差大于某一个阈值, ...
- 无监督︱异常、离群点检测 一分类——OneClassSVM
OneClassSVM两个功能:异常值检测.解决极度不平衡数据 因为之前一直在做非平衡样本分类的问题,其中如果有一类比例严重失调,就可以直接用这个方式来做:OneClassSVM:OneClassSV ...
- 从时序异常检测(Time series anomaly detection algorithm)算法原理讨论到时序异常检测应用的思考
1. 主要观点总结 0x1:什么场景下应用时序算法有效 历史数据可以被用来预测未来数据,对于一些周期性或者趋势性较强的时间序列领域问题,时序分解和时序预测算法可以发挥较好的作用,例如: 四季与天气的关 ...
- AIOps探索:基于VAE模型的周期性KPI异常检测方法——VAE异常检测
AIOps探索:基于VAE模型的周期性KPI异常检测方法 from:jinjinlin.com 作者:林锦进 前言 在智能运维领域中,由于缺少异常样本,有监督方法的使用场景受限.因此,如何利用无监 ...
- Abnormal Detection(异常检测)和 Supervised Learning(有监督训练)在异常检测上的应用初探
1. 异常检测 VS 监督学习 0x1:异常检测算法和监督学习算法的对比 总结来讲: . 在异常检测中,异常点是少之又少,大部分是正常样本,异常只是相对小概率事件 . 异常点的特征表现非常不集中,即异 ...
- 杜伦大学提出GANomaly:无需负例样本实现异常检测
杜伦大学提出GANomaly:无需负例样本实现异常检测 本期推荐的论文笔记来自 PaperWeekly 社区用户 @TwistedW.在异常检测模块下,如果没有异常(负例样本)来训练模型,应该如何实现 ...
- kaggle信用卡欺诈看异常检测算法——无监督的方法包括: 基于统计的技术,如BACON *离群检测 多变量异常值检测 基于聚类的技术;监督方法: 神经网络 SVM 逻辑回归
使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异 ...
- 使用GAN进行异常检测——可以进行网络流量的自学习哇,哥哥,人家是半监督,无监督的话,还是要VAE,SAE。
实验了效果,下面的还是图像的异常检测居多. https://github.com/LeeDoYup/AnoGAN https://github.com/tkwoo/anogan-keras 看了下,本 ...
- UEBA 学术界研究现状——用户行为异常检测思路:序列挖掘prefixspan,HMM,LSTM/CNN,SVM异常检测,聚类CURE算法
论文 技术分析<关于网络分层信息泄漏点快速检测仿真> "1.基于动态阈值的泄露点快速检测方法,采样Mallat算法对网络分层信息的离散采样数据进行离散小波变换;利用滑动窗口对该尺 ...
随机推荐
- Mybatis一对一和一对多配置
作者:夕下奕林 问题描述 现在有三张数据表,表名为orders,orderdetail,items,分别表示订单,订单详情,商品. 其中一个订单包含多个订单详情,表示订单中的不同个具体的商品,订单详情 ...
- Vue event.stopPropagation()和event.preventDefault()的使用
定义和用法 1. event.stopPropagation()方法 阻止事件冒泡到父元素,阻止任何父事件处理程序被执行,但是它的默认事件仍然会执行.当调用这个方法的时候,如果点击了一个链接(a标签) ...
- Intel Code Challenge Final Round D. Dense Subsequence 二分思想
D. Dense Subsequence time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Linux创建删除文件和文件夹
要想删除和创建,需要有root权限 [xwg@bogon ~]$ su root密码:[root@bogon xwg]# cd /home/a 切换到目录a[root@bogon a]# t ...
- Cocos Creator中按钮组件数组的使用
Cocos Creator游戏开发中经常使用到按钮,特别是大量按钮的情况,此时使用数组来管理这些按钮就显得更具通用性.我大致走了一下官方的示例,好像没有发现有这个小内容(或者有,但我却是没有找到),于 ...
- jQuery的$符号
jQuery使用$的原因是: 书写简洁, 相对于其他字符与众不同, 容易被记住. JQuery占用了两个变量: $ 和 jQuery. 当在代码中打印 $ 和 jQuery时: <script ...
- python正则表达式的用法
import re r1 = re.compile(r'(?im)(?P<name></html>)$') content = """ <H ...
- Java基础线程系列大纲
## Java 多线程之 线程创建 ## Java 多线程之 Sleep ## Java 多线程之 Join ## Java 多线程之 生命周期 ## Java 多线程之 wait, notify a ...
- maxwell的数据引导方式
INSERT INTO maxwell.bootstrap (database_name, table_name,where_clause) VALUES (--''); INSERT INTO ma ...
- Java后端开发规范
基于阿里巴巴JAVA开发规范整理 一.命名风格 [强制]类名使用 UpperCamelCase 风格,必须遵从驼峰形式,但以下情形例外:DO / BO / DTO / VO / AO 正例:Marco ...