题意

给你一个长度为 \(n\) 的整数序列 \(a_1, a_2, \ldots, a_n\),你需要实现以下两种操作,每个操作都可以用四个整数 \(opt\ l\ r\ v\) 来表示:

  • \(opt=1\) 时,代表把一个区间 \([l, r]\) 内的所有数都 \(xor\) 上 \(v\)。

  • \(opt=2\) 时, 查询一个区间 \([l, r]\) 内选任意个数(包括 \(0\) 个)数 \(xor\) 起来,这个值与 \(v\) 的最大 \(xor\) 和是多少。

分析

线段树维护下线性基就行了,区间修改的时候记录下线段树每个结点的修改量\(k​\),合并的时候再加进线性基

因为线性基是构造出的一组极大线性无关组,所以查询\((a_i~xor~k)(i∈[l,r])\)组成的线性基等价于查询\(k∪a_i(i∈[l,r])​\)

Code

#include<bits/stdc++.h>
#define fi first
#define se second
#define bug cout<<"--------------"<<endl
using namespace std;
typedef long long ll;
const double PI=acos(-1.0);
const double eps=1e-6;
const int inf=1e9;
const ll llf=1e18;
const int mod=1e9+7;
const int maxn=5e4+10;
struct ji{
int p[33],k;
void clear(){
memset(p,0,sizeof(p));
}
void insert(int x){
for(int i=30;i>=0;i--){
if(!((x>>i)&1)) continue;
if(p[i]) x^=p[i];
else{
p[i]=x;
break;
}
}
}
int qy(int x){
int ret=x;
for(int i=30;i>=0;i--) ret=max(ret^p[i],ret);
return ret;
}
};
int n,m;
int a[maxn],b[maxn],f[maxn],tag[maxn<<2];
ji tr[maxn<<2];
ji mer(ji a,ji b){
ji ret=a;
for(int i=30;i>=0;i--) if(b.p[i]) ret.insert(b.p[i]);
ret.insert(ret.k^b.k);
return ret;
}
void pushup(int p){
tr[p]=mer(tr[p<<1],tr[p<<1|1]);
}
void tag1(int p,int x){
tr[p].k^=x;
tag[p]^=x;
}
void pushdown(int p){
tag1(p<<1,tag[p]);
tag1(p<<1|1,tag[p]);
tag[p]=0;
}
void build(int l,int r,int p){
if(l==r){
scanf("%d",&tr[p].k);
return;
}
int mid=l+r>>1;
build(l,mid,p<<1);
build(mid+1,r,p<<1|1);
pushup(p);
}
void up(int dl,int dr,int l,int r,int p,int x){
if(l>=dl&&r<=dr){
tr[p].k^=x;
tag[p]^=x;
return;
}
pushdown(p);
int mid=l+r>>1;
if(dl<=mid) up(dl,dr,l,mid,p<<1,x);
if(dr>mid) up(dl,dr,mid+1,r,p<<1|1,x);
pushup(p);
}
ji ans;
void qy(int dl,int dr,int l,int r,int p){
if(l>=dl&&r<=dr){
ans=mer(ans,tr[p]);
return;
}
pushdown(p);
int mid=l+r>>1;
if(dl<=mid) qy(dl,dr,l,mid,p<<1);
if(dr>mid) qy(dl,dr,mid+1,r,p<<1|1);
}
int main(){
scanf("%d%d",&n,&m);
build(1,n,1);
while(m--){
int op,l,r,v;
scanf("%d%d%d%d",&op,&l,&r,&v);
if(op==1){
up(l,r,1,n,1,v);
}else{
ans.clear();
qy(l,r,1,n,1);
printf("%d\n",ans.qy(v));
}
}
return 0;
}

Comet OJ - Contest #3 D 可爱的菜菜子 线段树+线性基的更多相关文章

  1. Comet OJ - Contest #3 D可爱的菜菜子(线段树+线性基的合并)

    这题其实挺经典的,看到求异或最大,显然想到的是线性基,不过这怎么维护?当然区间有关的东西都可以上线段树,区间修改时记录每个点的修改量k,然后合并线性基时再加入线性基.因为线性基是求一组极大线性无关组, ...

  2. Comet OJ - Contest #2简要题解

    Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/ ...

  3. Comet OJ - Contest #11 题解&赛后总结

    Solution of Comet OJ - Contest #11 A.eon -Problem designed by Starria- 在模 10 意义下,答案变为最大数的最低位(即原数数位的最 ...

  4. Comet OJ - Contest #2 简要题解

    Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{( ...

  5. Comet OJ - Contest #4--前缀和

    原题:Comet OJ - Contest #4-B https://www.cometoj.com/contest/39/problem/B?problem_id=1577传送门 一开始就想着暴力打 ...

  6. Comet OJ - Contest #8

    Comet OJ - Contest #8 传送门 A.杀手皇后 签到. Code #include <bits/stdc++.h> using namespace std; typede ...

  7. Comet OJ - Contest #13-C2

    Comet OJ - Contest #13-C2 C2-佛御石之钵 -不碎的意志-」(困难版) 又是一道并查集.最近做过的并查集的题貌似蛮多的. 思路 首先考虑,每次处理矩形只考虑从0变成1的点.这 ...

  8. Comet OJ - Contest #13 「火鼠的皮衣 -不焦躁的内心-」

    来源:Comet OJ - Contest #13 芝士相关: 复平面在信息学奥赛中的应用[雾 其实是道 sb 题??? 发现原式貌似十分可二项式定理,然后发现确实如此 我们把 \(a^i\) 替换成 ...

  9. Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(hard)

    来源:Comet OJ - Contest #13 一眼并查集,然后发现这题 tmd 要卡常数的说卧槽... 发现这里又要用并查集跳过访问点,又要用并查集维护联通块,于是开俩并查集分别维护就好了 一开 ...

随机推荐

  1. Boot-crm管理系统开发教程(总结)

    这个Boot-crm管理系统我花了大概两周写完,因为是刚学完SSM框架,所以立马开始了这个项目,项目初期,运行书本上给的前端代码都报了许多错误,导致这个原因是因为书本给的 设计说明文档 没有看清楚.然 ...

  2. lua的数据类型

    Lua 是动态(弱)类型的语言,它有一下几种数据结构: nil(空) nil 类型表示一种没有任何有效值,它只有一个值 -- nil,例如打印一个没有赋值的变量,便会输出一个 nil 值: print ...

  3. 如何配置数据库镜像<一>

    一.简介 “数据库镜像”是Sql Server 2005推出的一个主要用于提高数据库可用率的软件解决方案.镜像是基于每个数据库执行的,仅适用于使用完整恢复模式的数据库.简单恢复模式和大容量日志恢复模式 ...

  4. SharePoint 创建页面布局

    一.前言 文章成体系,如果有不明白的地方请查看前面的文章. 二.目录 1.创建页面布局 2.首次使用页面布局 3.修改页面布局 4.使用页面布局 5.最终效果 1.创建页面布局 (1)打开设计管理器, ...

  5. windows服务总结

    一.创建windows服务项目创建完成后结构,如: 其中,Program.cs代码: using System; using System.Collections.Generic; using Sys ...

  6. WebFont技术使用之如何在app中使用自定义字体

    参考 H5自定义字体解决方法(mark) 移动Web字体的使用 [原]移动web页面使用字体的思考 CSS @font-face规则 引用外部服务器字体

  7. 向PHP发送HTTP-Post请求

    欢迎访问我的个人博客,获取更多有用的东西 链接一 链接二 也可以关注我的微信订阅号:CN丶Moti 1.post.html <!DOCTYPE html> <html lang=&q ...

  8. form表单相关

    <input> 元素 <input> 元素是最重要的表单元素. <input> 元素有很多形态,根据不同的 type 属性. 这是本章中使用的类型: 类型 描述 t ...

  9. vue项目 时间戳转 格式

    项目用了 element UI的日期插件,修改时 时间回显不了,打印出来是换行了,因此要转换 changeTime(value){ let date = new Date(value); let y ...

  10. php--常见算法1

    <?php //递归输出123321 function digui($num){ echo $num; if($num<3){ digui($num+1); } echo $num; } ...