B. Kyoya and Permutation

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://codeforces.com/contest/553/problem/B

Description

Let's define the permutation of length n as an array p = [p1, p2, ..., pn] consisting of n distinct integers from range from 1 to n. We say that this permutation maps value 1 into the value p1, value 2 into the value p2 and so on.

Kyota Ootori has just learned about cyclic representation of a permutation. A cycle is a sequence of numbers such that each element of this sequence is being mapped into the next element of this sequence (and the last element of the cycle is being mapped into the first element of the cycle). The cyclic representation is a representation of p as a collection of cycles forming p. For example, permutation p = [4, 1, 6, 2, 5, 3] has a cyclic representation that looks like (142)(36)(5) because 1 is replaced by 4, 4 is replaced by 2, 2 is replaced by 1, 3 and 6 are swapped, and 5 remains in place.

Permutation may have several cyclic representations, so Kyoya defines the standard cyclic representation of a permutation as follows. First, reorder the elements within each cycle so the largest element is first. Then, reorder all of the cycles so they are sorted by their first element. For our example above, the standard cyclic representation of [4, 1, 6, 2, 5, 3] is (421)(5)(63).

Now, Kyoya notices that if we drop the parenthesis in the standard cyclic representation, we get another permutation! For instance, [4, 1, 6, 2, 5, 3] will become [4, 2, 1, 5, 6, 3].

Kyoya notices that some permutations don't change after applying operation described above at all. He wrote all permutations of length n that do not change in a list in lexicographic order. Unfortunately, his friend Tamaki Suoh lost this list. Kyoya wishes to reproduce the list and he needs your help. Given the integers n and k, print the permutation that was k-th on Kyoya's list.

Input

The first line will contain two integers n, k (1 ≤ n ≤ 50, 1 ≤ k ≤ min{1018, l} where l is the length of the Kyoya's list).

Output

Print n space-separated integers, representing the permutation that is the answer for the question.

Sample Input

4 3

Sample Output

1 3 2 4

HINT

题意

cycle,就是不在同一个位置的数,会成为一个圈

每个cycle从大到小排序,所有cycle按第一个元素从大到小排序

排序完了以后跟原来的序列不变就是合法

然后让你输出第k大的合法数组

题解:

dp[i] = dp[i - 1] + dp[i - 2]

比如1号位,可以放1

1号位,也可以放2,如果放2

那么考虑2号位

显然不能比2大

那就只能放1了

1号位放3以上的都不行

知道合法种类数有第n个fib数个数之后,构造方法就很显然了

代码

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 2000001
#define mod 1000000007
#define eps 1e-9
int Num;
char CH[];
//const int inf=0x7fffffff; //нчоч╢С
const int inf=0x3f3f3f3f;
/* inline void P(int x)
{
Num=0;if(!x){putchar('0');puts("");return;}
while(x>0)CH[++Num]=x%10,x/=10;
while(Num)putchar(CH[Num--]+48);
puts("");
}
*/
inline ll read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void P(int x)
{
Num=;if(!x){putchar('');puts("");return;}
while(x>)CH[++Num]=x%,x/=;
while(Num)putchar(CH[Num--]+);
puts("");
}
//************************************************************************************** ll c[]={,,},k;
int n,a[];
main()
{
for(int i=;i<;i++)
c[i]=c[i-]+c[i-];
cin>>n>>k;
for(int i=;i<=n;)
{
if (k>c[n-i])
{
k-=c[n-i];
a[i]=i+;
a[i+]=i;i+=;
}
else
{
a[i]=i;
i++;
}
}
for(int i=;i<=n;i++)
printf("%d ",a[i]);
}

Codeforces Round #309 (Div. 1) B. Kyoya and Permutation 构造的更多相关文章

  1. Codeforces Round #309 (Div. 2) -D. Kyoya and Permutation

    Kyoya and Permutation 这题想了好久才写出来,没看题解写出来的感觉真的好爽啊!!! 题目大意:题意我看了好久才懂,就是给你一个序列,比如[4, 1, 6, 2, 5, 3],第一个 ...

  2. 找规律 Codeforces Round #309 (Div. 2) A. Kyoya and Photobooks

    题目传送门 /* 找规律,水 */ #include <cstdio> #include <iostream> #include <algorithm> #incl ...

  3. Codeforces Round #309 (Div. 2) C. Kyoya and Colored Balls 排列组合

    C. Kyoya and Colored Balls Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contes ...

  4. Codeforces Round #309 (Div. 2) A. Kyoya and Photobooks 字符串水题

    A. Kyoya and Photobooks Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  5. Codeforces Round #309 (Div. 2) C. Kyoya and Colored Balls

    Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are ...

  6. Codeforces Round #309 (Div. 2) A. Kyoya and Photobooks【*组合数学】

    A. Kyoya and Photobooks time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. 贪心 Codeforces Round #309 (Div. 2) B. Ohana Cleans Up

    题目传送门 /* 题意:某几列的数字翻转,使得某些行全为1,求出最多能有几行 想了好久都没有思路,看了代码才知道不用蠢办法,匹配初始相同的行最多能有几对就好了,不必翻转 */ #include < ...

  8. Codeforces Round #309 (Div. 1)

    A. Kyoya and Colored Balls 大意: 给定$k$种颜色的球, 第$i$种颜色有$c_i$个, 一个合法的排列方案满足最后一个第$i$种球的下一个球为第$i+1$种球, 求合法方 ...

  9. C. Kyoya and Colored Balls(Codeforces Round #309 (Div. 2))

    C. Kyoya and Colored Balls Kyoya Ootori has a bag with n colored balls that are colored with k diffe ...

随机推荐

  1. scala初学

    起因:新公司的程序用scala,为了不落后,不落伍,跟上时代的浪潮,咱们测试也得学学新东西 适合读者:有java经验的IT人士 scala:所有变量都是对象,所有操作都是方法 1.定义变量:变量:类型 ...

  2. 数往知来 asp.net 聊天室问题解决方案<十六>

      1:在服务端创建了一个负责监听的sokcet   //三个:采用TCP协议.              ListenSocket = new Socket(AddressFamily.InterN ...

  3. Yii 1.1 DAO绑定参数实例

    <?php $sql = "SELECT * FROM admin_user WHERE user_name=:uname AND password LIKE :c"; $c ...

  4. Yii 1.11 获取当前的模块名 控制器名 方法名

    $this->module->id; #模块名$this->action->id; #方法名$this->uniqueId; #控制器名称 Yii: 获取当前模块名.控制 ...

  5. 在Spring MVC中使用注解的方式校验RequestParams

    概述   Spring MVC支持Bean Validation,通过这个验证技术,可以通过注解方式,很方便的对输入参数进行验证,之前使用的校验方式,都是基于Bean对象的,但是在@RequestPa ...

  6. poj 1552 Doubles

    #include <stdio.h> #include <stdlib.h> ]; int cmp(const void *a, const void *b) { return ...

  7. phonegap 新窗口 inappbrowser插件

    在Phonegap 开发过程中,需要调用外部网页,又要跳出白名单安全限制,可以使用 inappbrowser插件. http://plugins.cordova.io/#/package/org.ap ...

  8. LINQ标准查询操作符(五)

    十二.相等操作符 如果两个序列的对应元素相等且这两个序列具有相同数量的元素,则视这两个序列相等. SequenceEqual方法通过并行地枚举两个数据源并比较相应元素来判断两个序列是否相等.如果两个序 ...

  9. 无法debug断点跟踪JDK源代码——missing line number attributes的解决方法

    在项目工程->Properties->Java Build Path->Libraries中导入的JRE System Library库里,给jar包添加JDK源代码包后,能够直接打 ...

  10. TPARAMS和OLEVARIANT相互转换

    所谓的“真3层”有时候是需要客户端上传数据集的TPARAMS到中间件的. 现在,高版本的DATASNAP的远程方法其实也是直接可以传输TPARAMS类型的变量,但是DELPHI7(七爷).六爷它们是不 ...