Codeforces Round #227 (Div. 2) E. George and Cards 线段树+set
题目链接:
题目
E. George and Cards
time limit per test:2 seconds
memory limit per test:256 megabytes
问题描述
George is a cat, so he loves playing very much.
Vitaly put n cards in a row in front of George. Each card has one integer written on it. All cards had distinct numbers written on them. Let's number the cards from the left to the right with integers from 1 to n. Then the i-th card from the left contains number pi (1 ≤ pi ≤ n).
Vitaly wants the row to have exactly k cards left. He also wants the i-th card from left to have number bi written on it. Vitaly gave a task to George, to get the required sequence of cards using the remove operation n - k times.
In one remove operation George can choose w (1 ≤ w; w is not greater than the current number of cards in the row) contiguous cards (contiguous subsegment of cards). Let's denote the numbers written on these card as x1, x2, ..., xw (from the left to the right). After that, George can remove the card xi, such that xi ≤ xj for each j (1 ≤ j ≤ w). After the described operation George gets w pieces of sausage.
George wondered: what maximum number of pieces of sausage will he get in total if he reaches his goal and acts optimally well? Help George, find an answer to his question!
输入
The first line contains integers n and k (1 ≤ k ≤ n ≤ 106) — the initial and the final number of cards.
The second line contains n distinct space-separated integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the initial row of cards.
The third line contains k space-separated integers b1, b2, ..., bk — the row of cards that you need to get. It is guaranteed that it's possible to obtain the given row by using the remove operation for n - k times.
输出
Print a single integer — the maximum number of pieces of sausage that George can get if he acts optimally well.
样例
input
3 2
2 1 3
1 3
output
1
input
10 5
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10
output
30
题意
给你一个长度为n的原始序列和一个长度为k子序列,要你把不属于这个子序列的数都删了,你可以选择的操作是每次选连续的w个数,然后删除最小的那个,并且你能够获得w的贡献值,问你如何操作n-k次使贡献值的和最大。
题解
只要我们按序列的值递增来做,并且每次贪心取最大的区间,就能得到最优,一开始我用线段树维护sum和min,在每次操作时用二分+区间min找到左右界,用sum统计区间内还存在的数的和。复杂度O(nlogn+n(logn)^2)第八组数据就t了。(orz)
正解是一开始就用一个set只维护那些比当前数小的并且最后一定会保留下来的数(不会保留下来的,比当前数小的数都已经删除了,所以根本不要放到set里面,这样子做的话每次找x的前驱后继就可以做完了,再加一个线段树或树状数组维护一下区间和就可以了,时间复杂度只有O(nlogn)。
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<set>
#define X first
#define Y second
#define M l+(r-l)/2
#define lson (o<<1)
#define rson ((o<<1)|1)
using namespace std;
const int maxn = 1e6+10;
const int INF = 0x3f3f3f3f;
typedef __int64 LL;
int minv[maxn << 2];
LL sumv[maxn << 2];
int used[maxn],id[maxn];
int n, k;
set<int> st;
int _p, _v;
void update(int o, int l, int r) {
if (l == r) {
sumv[o] = _v;
}
else {
if (_p <= M) update(lson, l, M);
else update(rson, M + 1, r);
minv[o] = min(minv[lson], minv[rson]);
sumv[o] = sumv[lson] + sumv[rson];
}
}
int ql, qr;
LL _sum;
void query(int o, int l, int r) {
if (ql <= l&&r <= qr) {
_sum += sumv[o];
}
else {
if (ql <= M) query(lson, l, M);
if (qr > M) query(rson, M + 1, r);
}
}
int main() {
memset(used, 0, sizeof(used));
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++) {
int x; scanf("%d", &x);
id[x] = i;
_p = i; _v = 1;
update(1, 1, n);
}
for (int i = 1; i <= k; i++) {
int x; scanf("%d",&x);
used[x] = 1;
}
LL ans = 0;
st.insert(0);
st.insert(n + 1);
for (int i = 1; i <= n; i++) {
if (!used[i]) {
set<int>::iterator it = st.upper_bound(id[i]);
qr = *it - 1; ql = *(--it) + 1;
_sum = 0;
query(1, 1, n);
ans += _sum;
_p = id[i], _v = 0;
update(1, 1, n);
}
else {
st.insert(id[i]);
}
}
printf("%I64d\n", ans);
return 0;
}
乱七八糟:
这道题和之前做过的用线段树来维护一个元素的名次的动态查询点这里有异曲同工之妙,都利用了数本身的有序性来排除其他干扰的元素。 这道题也体现了离线处理的巧妙,比如说排个序啥的是吧。
Codeforces Round #227 (Div. 2) E. George and Cards 线段树+set的更多相关文章
- Codeforces Round #227 (Div. 2) E. George and Cards set内二分+树状数组
E. George and Cards George is a cat, so he loves playing very much. Vitaly put n cards in a row in ...
- Codeforces Round #292 (Div. 1) C. Drazil and Park 线段树
C. Drazil and Park 题目连接: http://codeforces.com/contest/516/problem/C Description Drazil is a monkey. ...
- Codeforces Round #254 (Div. 1) C. DZY Loves Colors 线段树
题目链接: http://codeforces.com/problemset/problem/444/C J. DZY Loves Colors time limit per test:2 secon ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线
D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...
- Codeforces Round #337 (Div. 2) D. Vika and Segments (线段树+扫描线+离散化)
题目链接:http://codeforces.com/contest/610/problem/D 就是给你宽度为1的n个线段,然你求总共有多少单位的长度. 相当于用线段树求面积并,只不过宽为1,注意y ...
- Codeforces Round #149 (Div. 2) E. XOR on Segment (线段树成段更新+二进制)
题目链接:http://codeforces.com/problemset/problem/242/E 给你n个数,m个操作,操作1是查询l到r之间的和,操作2是将l到r之间的每个数xor与x. 这题 ...
- Codeforces Round #321 (Div. 2) E. Kefa and Watch 线段树hash
E. Kefa and Watch Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/580/prob ...
- Codeforces Round #271 (Div. 2) E题 Pillars(线段树维护DP)
题目地址:http://codeforces.com/contest/474/problem/E 第一次遇到这样的用线段树来维护DP的题目.ASC中也遇到过,当时也非常自然的想到了线段树维护DP,可是 ...
- Codeforces Round #207 (Div. 1) A. Knight Tournament (线段树离线)
题目:http://codeforces.com/problemset/problem/356/A 题意:首先给你n,m,代表有n个人还有m次描述,下面m行,每行l,r,x,代表l到r这个区间都被x所 ...
随机推荐
- Part 92 Significance of Thread Join and Thread IsAlive functions
Thread.Join & Thread.IsAlive functions Join blocks the current thread and makes it wait until th ...
- hive sql 语法详解
Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构 化的数据文件映射为一张数据库表,并提供完整的SQL查 ...
- js点击button按钮跳转到页面代码
点击按钮怎么跳转到另外一个页面呢?我们在网站制作中可能是需要的,因为有时我们需要做这样的效果,尤其是将按钮做成一个图片,而点击图片要跳转到新的页面时,怎么做到呢? 这样的效果可以:onclick=&q ...
- Hadoop集群错误
1.Hadoop集群所有的DataNode都启动不了解决办法 删除从节点.../usr/hadoop/tmp/dfs/ 下内容,再重新格式化namenode
- 第六十九篇、OC_录制语音和播放语音功能的实现
录制: 1.设置全局属性 NSURL *recordedFile;//存放路径 AVAudioPlayer *player;//播放 AVAudioRecorder *recorder;//录制 NS ...
- Spring IoC容器的设计——BeanFactory应用场景2
1.BeanFactory接口设计了getBean方法,这个方法是使用IoC容器API的主要方法,通过这个方法,可以取得IoC容器中管理的Bean,Bean的取得是通过指定名字来索引的. 2.如果需要 ...
- 通过Javascript数组设计一个省市联动菜单
通过Javascript数组设计一个省市联动菜单 使用Option内置类来完成下拉选项的创建 2.使用定时器实现一个时钟程序 3.使用PHP+JSON完成语音验证码 网址:http://yuyin.b ...
- sql常用的星期方法
sql常用的星期方法: SELECT convert(varchar(10),DATEADD(wk, DATEDIFF(wk,0,getdate()), 0),120) --本周开始周一SELECT ...
- SUID或SGID程序中能不能用system函数
system()函数的声明和说明如下: 注意它的描述那里,system()执行一个由command参数定义的命令,通过调用/bin/sh -c命令来实现这个功能.也就是说它的逻辑是这样的! 进程调用s ...
- Flex-box 学习
.flex-cont{ /*定义为flexbox的“父元素”*/ display: -webkit-box; display: -webkit-flex; display: flex; /*子元素沿主 ...