For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1:

Given n = 4, edges = [[1, 0], [1, 2], [1, 3]]

        0
|
1
/ \
2 3

return [1]

Example 2:

Given n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

     0  1  2
\ | /
3
|
4
|
5

return [3, 4]

Hint:

Show Hint

  1. How many MHTs can a graph have at most?

Note:

(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”

(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.

public class Solution {

    /** return the height of tree if let s to be the root of the tree */
public static int bfs(ArrayList<ArrayList<Integer> > g, int s) { HashSet<Integer> upper = new HashSet<Integer> ();
HashSet<Integer> lower = new HashSet<Integer> ();
HashSet<Integer> vis = new HashSet<Integer> (); upper.add(s);
vis.add(s);
int lv = 1; while(!upper.isEmpty()) { for(int u: upper) {
ArrayList<Integer> adj = g.get(u);
for(int i=0; i<adj.size(); ++i) {
int adj_node = adj.get(i);
if(!vis.contains(adj_node)) {
lower.add(adj_node);
}
}
} if(!lower.isEmpty()) {
++lv;
} upper.clear();
for(int c: lower) {
vis.add(c);
upper.add(c);
}
lower.clear();
} return lv;
} public static ArrayList<Integer> topologicalSort(int n, int[][] edges, ArrayList<ArrayList<Integer> > g) { ArrayList<Integer> topo = new ArrayList<Integer> ();
int[] d = new int[n]; for(int i=0; i<edges.length; ++i) {
int u = edges[i][0], v = edges[i][1];
++d[u]; ++d[v];
} LinkedList<Integer> queue = new LinkedList<Integer> ();
for(int i=0; i<n; ++i) {
if(d[i] == 1) {
queue.addLast(i);
}
} while(!queue.isEmpty()) {
int top = queue.pollFirst();
topo.add(top); ArrayList<Integer> adj = g.get(top);
for(int next: adj) {
d[next]--;
if(d[next] == 1) {
queue.addLast(next);
}
}
} return topo;
} public List<Integer> findMinHeightTrees(int n, int[][] edges) { List<Integer> rs = new ArrayList<Integer> ();
if(n == 1) {
rs.add(0);
return rs;
} ArrayList<ArrayList<Integer> > g = new ArrayList<ArrayList<Integer> > ();
for(int i=0; i<n; ++i) {
ArrayList<Integer> row = new ArrayList<Integer> ();
g.add(row);
}
for(int i=0; i<edges.length; ++i) {
int u = edges[i][0];
int v = edges[i][1]; g.get(u).add(v);
g.get(v).add(u);
} HashMap<Integer, Integer> mapping = new HashMap<Integer, Integer> ();
ArrayList<Integer> topo = topologicalSort(n, edges, g); int idx = topo.get(topo.size()-1);
int min_lv = bfs(g, idx);
rs.add(idx); if(topo.size() >= 2) {
int indice = topo.get(topo.size()-2);
if(bfs(g, indice) == min_lv) {
rs.add(indice);
}
} return rs; }
}

leetcode@ [310] Minimum Height Trees的更多相关文章

  1. [LeetCode] 310. Minimum Height Trees 解题思路

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  2. [LeetCode] 310. Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  3. 【LeetCode】310. Minimum Height Trees 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 BFS 相似题目 参考资料 日期 题目地址:http ...

  4. 310. Minimum Height Trees

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  5. [LeetCode] 310. Minimum Height Trees_Medium tag: BFS

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  6. 310. Minimum Height Trees -- 找出无向图中以哪些节点为根,树的深度最小

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  7. [LeetCode] Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  8. LeetCode Minimum Height Trees

    原题链接在这里:https://leetcode.com/problems/minimum-height-trees/ 题目: For a undirected graph with tree cha ...

  9. Minimum Height Trees -- LeetCode

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

随机推荐

  1. NOT EXISTS优化的一个案例 .

    原始语句: SELECT * FROM dcf_account.t_posting_transaction t1 WHERE NOT EXISTS ( SELECT * FROM dcf_loan.t ...

  2. Django admin的一些有用定制

    Model实例,myapp/models.py: from django.db import models class Blog(models.Model): name = models.CharFi ...

  3. [Quick-x]cocos2dx下的彩色文本显示--RichLabel

    部分关键代码与思路参考 http://www.cocoachina.com/bbs/read.php?tid=218977&page=1 感谢原作者 i7909 代码下载地址:https:// ...

  4. MFC编程入门

    一. 什么是MFC? 如果你要建立一个Windows应用程序,应该如何下手? 好的开端是从设计用户界面开始. 首先,你要决定什么样的用户能使用该程序并根据需要来设置相应的用户界面对象.Windows用 ...

  5. WIN32编程杂记(一)

    1.UNREFERENCED_PARAMETER的用处 作用:告诉编译器,已经使用了该变量,不必检测警告! 在VC编译器下,如果您用最高级别进行编译,编译器就会很苛刻地指出您的非常细小的警告.当你生命 ...

  6. IOS键盘收起

    1.点击Return按扭时收起键盘 - (BOOL)textFieldShouldReturn:(UITextField *)textField { return [textField resignF ...

  7. [POJ1330]Nearest Common Ancestors(LCA, 离线tarjan)

    题目链接:http://poj.org/problem?id=1330 题意就是求一组最近公共祖先,昨晚学了离线tarjan,今天来实现一下. 个人感觉tarjan算法是利用了dfs序和节点深度的关系 ...

  8. BZOJ2111: [ZJOI2010]Perm 排列计数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意:一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2< ...

  9. kendo grid输入框验证方法

    $("#grid").kendoGrid({ dataSource: dataSrc, //toolbar: ["save", "取消"], ...

  10. 【转】iOS UITableView的方法解析

    原文网址:http://www.cnblogs.com/wfwenchao/articles/3718742.html - (void)viewDidLoad { [super viewDidLoad ...