For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1:

Given n = 4, edges = [[1, 0], [1, 2], [1, 3]]

        0
|
1
/ \
2 3

return [1]

Example 2:

Given n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

     0  1  2
\ | /
3
|
4
|
5

return [3, 4]

Hint:

Show Hint

  1. How many MHTs can a graph have at most?

Note:

(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”

(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.

public class Solution {

    /** return the height of tree if let s to be the root of the tree */
public static int bfs(ArrayList<ArrayList<Integer> > g, int s) { HashSet<Integer> upper = new HashSet<Integer> ();
HashSet<Integer> lower = new HashSet<Integer> ();
HashSet<Integer> vis = new HashSet<Integer> (); upper.add(s);
vis.add(s);
int lv = 1; while(!upper.isEmpty()) { for(int u: upper) {
ArrayList<Integer> adj = g.get(u);
for(int i=0; i<adj.size(); ++i) {
int adj_node = adj.get(i);
if(!vis.contains(adj_node)) {
lower.add(adj_node);
}
}
} if(!lower.isEmpty()) {
++lv;
} upper.clear();
for(int c: lower) {
vis.add(c);
upper.add(c);
}
lower.clear();
} return lv;
} public static ArrayList<Integer> topologicalSort(int n, int[][] edges, ArrayList<ArrayList<Integer> > g) { ArrayList<Integer> topo = new ArrayList<Integer> ();
int[] d = new int[n]; for(int i=0; i<edges.length; ++i) {
int u = edges[i][0], v = edges[i][1];
++d[u]; ++d[v];
} LinkedList<Integer> queue = new LinkedList<Integer> ();
for(int i=0; i<n; ++i) {
if(d[i] == 1) {
queue.addLast(i);
}
} while(!queue.isEmpty()) {
int top = queue.pollFirst();
topo.add(top); ArrayList<Integer> adj = g.get(top);
for(int next: adj) {
d[next]--;
if(d[next] == 1) {
queue.addLast(next);
}
}
} return topo;
} public List<Integer> findMinHeightTrees(int n, int[][] edges) { List<Integer> rs = new ArrayList<Integer> ();
if(n == 1) {
rs.add(0);
return rs;
} ArrayList<ArrayList<Integer> > g = new ArrayList<ArrayList<Integer> > ();
for(int i=0; i<n; ++i) {
ArrayList<Integer> row = new ArrayList<Integer> ();
g.add(row);
}
for(int i=0; i<edges.length; ++i) {
int u = edges[i][0];
int v = edges[i][1]; g.get(u).add(v);
g.get(v).add(u);
} HashMap<Integer, Integer> mapping = new HashMap<Integer, Integer> ();
ArrayList<Integer> topo = topologicalSort(n, edges, g); int idx = topo.get(topo.size()-1);
int min_lv = bfs(g, idx);
rs.add(idx); if(topo.size() >= 2) {
int indice = topo.get(topo.size()-2);
if(bfs(g, indice) == min_lv) {
rs.add(indice);
}
} return rs; }
}

leetcode@ [310] Minimum Height Trees的更多相关文章

  1. [LeetCode] 310. Minimum Height Trees 解题思路

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  2. [LeetCode] 310. Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  3. 【LeetCode】310. Minimum Height Trees 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 BFS 相似题目 参考资料 日期 题目地址:http ...

  4. 310. Minimum Height Trees

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  5. [LeetCode] 310. Minimum Height Trees_Medium tag: BFS

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  6. 310. Minimum Height Trees -- 找出无向图中以哪些节点为根,树的深度最小

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  7. [LeetCode] Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  8. LeetCode Minimum Height Trees

    原题链接在这里:https://leetcode.com/problems/minimum-height-trees/ 题目: For a undirected graph with tree cha ...

  9. Minimum Height Trees -- LeetCode

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

随机推荐

  1. Linux功能-RPM命令详解

    一.概述 RPM是RedHat Package Manager(RedHat软件包管理工具)类似Windows里面的“添加/删除程序”,用RPM包方式来发布软件变得越来越流行,主要的原因是这种软件发布 ...

  2. hadoop拾遗(一)---- 避免切分map文件

    有些程序可能不希望文件被切分,而是用一个mapper完整处理每一个输入文件.例如,检查一个文件中所有记录是否有序,一个简单的方法是顺序扫描第一条记录并并比较后一条记录是否比前一条要小.如果将它实现为一 ...

  3. (sql server)数据分页的实现

    谈谈自己了解的几种数据库分页的方法,下面來分享下,有什么好的方法可以指导一下哦.. 方法一:利用ROW_NUMBER()方法 利用ROW_NUMBER 产生序列后直接取出 /*如要查詢的表為Test ...

  4. ADO和DAO的区别

    ADO(ACTIVEX DATA OBJECTS)应用层的数据访问接口ODBC 数据库驱动接口OLE DB 系统级数据访问接口DAO (DATA ACCESS OBJECTS) 对象的数据访问接口AD ...

  5. 用Rational Rose来建立数据库表

    这里以MS SQL Server2000中已有的一个Northwind库为例,我们命名新的数据库名为NorthwindRose:我们只挑其中的两个表Customers和Employees做示例,另外我 ...

  6. Java [Leetcode 118]Pascal's Triangle

    题目描述: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5 ...

  7. 关于python中使用mongodb模块,save和insert的小问题

    今天写python脚本的时候发现这样一个问题: import os , string , datetime ,pymongo; conn = pymongo.Connection("127. ...

  8. ASP.NET 经典60道面试题

    转:http://bbs.chinaunix.net/thread-4065577-1-1.html ASP.NET 经典60道面试题 1. 简述 private. protected. public ...

  9. IOS 多级列表展开控件

    项目中实现了一个可以多级展开的列表控件.每次展开都是互斥的,就是说,展开一个cell 就会关闭其他展开的层. 可以呈现的效果如下图.第一个图片是应用中实现的效果.第二个是Demo中的效果.如果有新的需 ...

  10. hdu 1506(dp求最大子矩阵)

    题意:容易理解... 分析:对于每个单位矩阵,我们先求出连续比它高的最左边的下标假设为l,然后求出比它高的最右边的下标假设为r,然后矩阵的面积就是(r-l+1)*1:我们从左到 右扫一遍,求出每个点的 ...