Tram network in Zagreb consists of a number of intersections and rails connecting some of them. In every intersection there is a switch pointing to the one of the rails going out of the intersection. When the tram enters the intersection it can leave only in the direction the switch is pointing. If the driver wants to go some other way, he/she has to manually change the switch.

When a driver has do drive from intersection A to the intersection B he/she tries to choose the route that will minimize the number of times he/she will have to change the switches manually.

Write a program that will calculate the minimal number of switch changes necessary to travel from intersection A to intersection B.

Input

The first line of the input contains integers N, A and B, separated by a single blank character, 2 <= N <= 100, 1 <= A, B <= N, N is the number of intersections in the network, and intersections are numbered from 1 to N.

Each of the following N lines contain a sequence of integers separated by a single blank character. First number in the i-th line, Ki (0 <= Ki <= N-1), represents the number of rails going out of the i-th intersection. Next Ki numbers represents the intersections directly connected to the i-th intersection.Switch in the i-th intersection is initially pointing in the direction of the first intersection listed.

Output

The first and only line of the output should contain the target minimal number. If there is no route from A to B the line should contain the integer "-1".

Sample Input

3 2 1
2 2 3
2 3 1
2 1 2

Sample Output

0
简述:题有点难懂,给你N组数以及起点A终点B,节点标号1-N,接下来每一行第一个数表示i-th连接有几个节点,后面的第一个数是默认方向不用改变,后续的都是需要改变一次方向。
思路:看懂题意后就是一个最短路问题,默认方向权为0,改变为1,四种算法选一种即可,我这里用的是dijkstra,(其他三种在A题中有,这里就不写了),代码如下:
const int maxm = ;
const int INF = 0x7ffffff; int N, A, B, d[maxm], vis[maxm]; struct Edge {
int from, to, dist;
Edge(int _from, int _to, int _dist) : from(_from), to(_to), dist(_dist){};
}; struct Node {
int from, dist;
Node(int _from, int _dist) : from(_from), dist(_dist){}
bool operator<(const Node &a)const {
return a.dist < dist;
}
}; vector<Edge> edges;
vector<int> G[maxm]; void addedge(int u, int v, int dist) {
edges.push_back(Edge(u, v, dist));
G[u].push_back(edges.size() - );
} void init() {
for(int i = ; i <= N; ++i) {
d[i] = INF;
G[i].clear();
}
edges.clear();
memset(vis, , sizeof(vis));
} int main() {
while(scanf("%d%d%d", &N, &A, &B) != EOF) {
init();
for (int i = ; i <= N; ++i) {
int t1, t2;
scanf("%d", &t1);
for(int j = ; j < t1; ++j) {
scanf("%d", &t2);
addedge(i, t2, j == ? : );
}
}
priority_queue<Node> q;
q.push(Node(A, ));
d[A] = ;
while(!q.empty()) {
Node p = q.top();
q.pop();
if(vis[p.from])
continue;
vis[p.from] = ;
int len = G[p.from].size();
for(int i = ; i < len; ++i) {
if(d[edges[G[p.from][i]].to] > d[p.from] + edges[G[p.from][i]].dist) {
d[edges[G[p.from][i]].to] = d[p.from] + edges[G[p.from][i]].dist;
q.push(Node(edges[G[p.from][i]].to, d[edges[G[p.from][i]].to]));
}
}
}
printf("%d\n", d[B] >= INF?-:d[B]);
}
return ;
}
												

Day4 - L - Tram POJ - 1847的更多相关文章

  1. Tram POJ - 1847

    题目链接:https://vjudge.net/problem/POJ-1847 思路:想从A到B使用开关少,想清楚了就是个简单的最短路,可以把不用开开关为权值0, 要开开关为权值1,就是求A到B开开 ...

  2. Tram POJ - 1847 spfa

    #include<iostream> #include<algorithm> #include<queue> #include<cstdio> #inc ...

  3. POJ 1847 Tram (最短路径)

    POJ 1847 Tram (最短路径) Description Tram network in Zagreb consists of a number of intersections and ra ...

  4. 最短路 || POJ 1847 Tram

    POJ 1847 最短路 每个点都有初始指向,问从起点到终点最少要改变多少次点的指向 *初始指向的那条边长度为0,其他的长度为1,表示要改变一次指向,然后最短路 =========高亮!!!===== ...

  5. poj 1847 最短路简单题,dijkstra

    1.poj  1847  Tram   最短路 2.总结:用dijkstra做的,算出a到其它各个点要改向的次数.其它应该也可以. 题意: 有点难懂.n个结点,每个点可通向ki个相邻点,默认指向第一个 ...

  6. poj 1847 Tram

    http://poj.org/problem?id=1847 这道题题意不太容易理解,n个车站,起点a,终点b:问从起点到终点需要转换开关的最少次数 开始的那个点不需要转换开关 数据: 3 2 1// ...

  7. [最短路径SPFA] POJ 1847 Tram

    Tram Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14630 Accepted: 5397 Description Tra ...

  8. POJ 1847 Tram (最短路)

    Tram 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/N Description Tram network in Zagreb ...

  9. poj 1847 Tram【spfa最短路】

    Tram Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 12005   Accepted: 4365 Description ...

随机推荐

  1. linux服务器自动备份与删除postgres数据库数据

    1.先创一个back.sh 文件,授权,然后在下面这个文件添加脚本 export PGPASSWORD='123456'        #这是登录服务器密码cur_time=`date +%Y%m%d ...

  2. 吴裕雄--天生自然python数据清洗与数据可视化:MYSQL、MongoDB数据库连接与查询、爬取天猫连衣裙数据保存到MongoDB

    本博文使用的数据库是MySQL和MongoDB数据库.安装MySQL可以参照我的这篇博文:https://www.cnblogs.com/tszr/p/12112777.html 其中操作Mysql使 ...

  3. nacos作为配置中心动态刷新@RefreshScope添加后取值为null的一个问题

    之前springboot项目常量类如下形式: @Component @RefreshScope//nacos配置中心时添加上 public class Constants { @Value(" ...

  4. 华为平板暴力禁用wifi

    删除以下配置文件及动态链接库: /system/etc/wifi/* /system/etc/permission/*wifi* /system/lib/*wifi*

  5. Django 学习 之路由层(URL)

    路由层(URL) 1.路由层简单配置 (1)path方法 写固定的url. (2)re_path方法 可以正则规则 例: urlpatterns = [ path('admin/', admin.si ...

  6. 一文解读SDN (转)

    一. 什么是SDN? SDN字面意思是软件定义网络,其试图摆脱硬件对网络架构的限制,这样便可以像升级.安装软件一样对网络进行修改,便于更多的APP(应用程序)能够快速部署到网络上. 如果把现有的网络看 ...

  7. UIViewContentModel图解+文解

    typedef NS_ENUM(NSInteger, UIViewContentMode) { //图片拉伸填充至整个UIImageView(图片可能会变形),这也是默认的属性,如果什么都不设置就是它 ...

  8. 后台:Django项目创建

    后台:Django项目创建 环境 """ 为luffy项目创建一个虚拟环境 >: mkvirtualenv luffy """ &qu ...

  9. Mybatis+Spring的整合练习

    一.建立数据库.建表 二.新建maven项目 三.添加依赖 <dependencies> <dependency> <groupId>junit</group ...

  10. container-coding-codec

    1 数字容器格式 container format 1.1 一些音频专有的容器: 1.2 静态图像专用的容器: 1.3 视频容器,可以容纳多种类型的音频和视频以及其他媒体 1.4 视频容器格式概述 1 ...