题目分享F 二代目
题意:T个点R种双向边,P种单向边,求点S到每个点的最短距离
分析:(这再看不出来是spfa就该**了)
首先,这题能否用spfa就看他是否有负环呗,显然,双向边的权值非负,单向边还有个啥政策,总之显然是没有负环了
那么直接跑裸的spfa
没想到竟然t了
难不成spfa还有优化?
我带着怀疑的心情上了百度,艹还真有
SLF优化:
SLF优化,即 Small Label First 策略,使用 双端队列 进行优化。
一般可以优化15%~20%,在竞赛中比较常用。
设从 u 扩展出了 v ,队列中队首元素为 k ,若 dis[ v ] < dis[ k ] ,则将 v 插入队首,否则插入队尾。
注:队列为空时直接插入队尾。
妙啊,我加上这个优化直接就过了,代码也很好写
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std; const int maxm=2e5+;
const int maxn=3e4+;
const int inf=0x3f3f3f3f; struct Node
{
int to,next,val;
}e[maxm];
int head[maxn];
int dis[maxn];
bool vis[maxn];
int cnt; void add(int x,int y,int z)
{
e[++cnt].to=y;
e[cnt].val=z;
e[cnt].next=head[x];
head[x]=cnt;
} int read()
{
char ch=getchar();int ans=,p=;
while(ch>''||ch<'')
{
if(ch=='-') p=-;
ch=getchar();
}
while(ch<=''&&ch>='')
{
ans=(ans<<)+(ans<<)+ch-'';
ch=getchar();
}
return ans*p;
} void spfa(int x)
{
memset(dis,0x3f,sizeof(dis));
deque<int> q;q.push_back(x),dis[x]=;
while(!q.empty())
{
int now=q.front();q.pop_front();
vis[now]=;
for(int i=head[now];i;i=e[i].next)
{
int v=e[i].to;
if(dis[v]>dis[now]+e[i].val)
{
dis[v]=dis[now]+e[i].val;
if(!vis[v])
{
vis[v]=;
if(!q.empty()&&dis[v]<dis[q.front()]) q.push_front(v);
else q.push_back(v);
}
}
}
}
} int main()
{
int t,r,p,s,x,y,z;
t=read(),r=read(),p=read(),s=read();
while(r--)
{
x=read(),y=read(),z=read();
add(x,y,z),add(y,x,z);
}
while(p--)
{
x=read(),y=read(),z=read();
add(x,y,z);
}
spfa(s);
for(int i=;i<=t;i++)
{
if(dis[i]==inf) printf("NO PATH\n");
else printf("%d\n",dis[i]);
}
return ;
}
然后我接着往下看,还有一个优化
LLL优化:
LLL优化,即 Large Label Last 策略,使用 双端队列 进行优化。
一般用SLF+LLL可以优化50%左右,但是在竞赛中并不常用LLL优化。
设队首元素为 k ,每次松弛时进行判断,队列中所有 dis 值的平均值为 x 。
若 dist[ k ] > x ,则将 k 插入到队尾,查找下一元素,直到找到某一个 k 使得 dis[ k ] <= x ,则将 k 出队进行松弛操作。
我也给他写出来了
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std; #define ll long long const int maxm=2e5+;
const int maxn=3e4+;
const int inf=0x3f3f3f3f; struct Node
{
int to,next,val;
}e[maxm];
int head[maxn];
int dis[maxn];
bool vis[maxn];
int cnt; void add(int x,int y,int z)
{
e[++cnt].to=y;
e[cnt].val=z;
e[cnt].next=head[x];
head[x]=cnt;
} int read()
{
char ch=getchar();int ans=,p=;
while(ch>''||ch<'')
{
if(ch=='-') p=-;
ch=getchar();
}
while(ch<=''&&ch>='')
{
ans=(ans<<)+(ans<<)+ch-'';
ch=getchar();
}
return ans*p;
} void spfa(int x)
{
int num=;ll sum=;
memset(dis,0x3f,sizeof(dis));
deque<int> q;q.push_back(x),dis[x]=;
while(!q.empty())
{
int now=q.front();q.pop_front();
num--,sum-=dis[now];
while(num&&dis[now]>sum/num)
{
q.push_back(now);
now=q.front();
q.pop_front();
}
vis[now]=;
for(int i=head[now];i;i=e[i].next)
{
int v=e[i].to;
if(dis[v]>dis[now]+e[i].val)
{
dis[v]=dis[now]+e[i].val;
if(!vis[v])
{
vis[v]=;
if(!q.empty()&&dis[v]<dis[q.front()]) q.push_front(v);
else q.push_back(v);
num++,sum+=dis[v];
}
}
}
}
} int main()
{
int t,r,p,s,x,y,z;
t=read(),r=read(),p=read(),s=read();
while(r--)
{
x=read(),y=read(),z=read();
add(x,y,z),add(y,x,z);
}
while(p--)
{
x=read(),y=read(),z=read();
add(x,y,z);
}
spfa(s);
for(int i=;i<=t;i++)
{
if(dis[i]==inf) printf("NO PATH\n");
else printf("%d\n",dis[i]);
}
return ;
}
令我没想到的是,这俩加起来竟然又t了
也可能是我写的不对,也有可能这个优化被卡了
总之以后我写spfa一定会带上SLF优化的,
这个题大概老姚是想让我们了解一下spfa的优化吧?
代码:上面给过了
题目分享F 二代目的更多相关文章
- 题目分享H 二代目
题意:有m个限制,每个限制l1,r1,l2,r2四个数,限制了一个长度为n的数第l1到r1位要与第l2到r2相同,保证r1-l1=r2-l2,求在限制下一共有多少种数 分析: 暴力的话肯定是从l1-r ...
- 题目分享E 二代目
题意:一棵点数为n的树,每个节点有点权,要求在树中中找到一个最小的x,使得存在一个点满足max(该点点权,该点相邻的点的点权+1,其他点的点权+2)=x 分析:首先要能把题目转化为上述题意 首先题目让 ...
- 题目分享D 二代目
题意:给定一个T条边的无向图,求S到E恰好经过N条边的最短路径 T≤100 N≤1000000 分析:(据说好像假期学长讲过) 首先很容易想到的是dp[i][j][k]表示从i到j经过k条边的最短路径 ...
- 题目分享C 二代目
题意:一个数列是由 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6.....组成,也就是1-1,1-2,1-3......并且如果遇到多位数也要拆成数字比如1-10 ...
- 题目分享G 二代目
题意:有n组数,每组包含两个数,问在每组只能取一个的前提下能组成的最长的从1开始的连续自然数有几个? 分析:刚学了差分约束系统,很容易往转换成图的方向去想 将他读入的这n组数当成边读入 很容易会得到一 ...
- 2019年腾讯PHP程序员面试题目分享
有需要学习交流的友人请加入交流群的咱们一起,有问题一起交流,一起进步!前提是你是学技术的.感谢阅读! 点此加入该群jq.qq.com 1. php 的垃圾回收机制 PHP 可以自动进行内存管理,清除 ...
- 20190924-LeetCode解数独题目分享
解决数独 题目描述 编写一个程序,通过已填充的空格来解决数独问题. 一个数独的解法需遵循如下规则: 数字 1-9 在每一行只能出现一次. 数字 1-9 在每一列只能出现一次. 数字 1-9 在每一个以 ...
- 题目分享X
题意:一张票有n位数,如果这张票的前一半数字的和等于后一半数字的和(n一定是偶数),就称这张票为快乐票.有些数被擦除了,标记为’?’(’?‘的个数也是偶数),现在Monocarp 和 Bicarp 进 ...
- 题目分享V
题意:现在两个人做游戏,每个人刚开始都是数字1,谁赢了就能乘以k^2,输的乘以k(k可以是任意整数,每次不一定相同)现在给你最终这两个人的得分,让你判断是否有这个可能,有可能的话Yes,否则No. 分 ...
随机推荐
- es实现mysql的like查询
es版本6.8 因为阿里云的dts同步最高支持es版本就是6.8 构建索引 PUT /z_test/ { "mappings": { "doc": { &quo ...
- 差分数组&&定义&&使用方法&&与线段树的区别
**1.定义**对于一个有n个元素的数组a[n],我们令a[i]-a[i-1]=d[i],且d[1]=a[1]-0=a[1];那么我们将d[i]称为**差分数组**---即记录数组中的每项元素与前一项 ...
- Linux C++ 网络编程学习系列(5)——多路IO之epoll边沿触发
多路IO之epoll边沿触发+非阻塞 源码地址:https://github.com/whuwzp/linuxc/tree/master/epoll_ET_LT_NOBLOCK_example 源码说 ...
- 【three.js第三课】鼠标事件,移动、旋转物体
1.下载three.js的源码包后,文件夹结构如下: 2.在[three.js第一课]的代码基础上,引入OrbitControls.js文件,此文件主要用于 对鼠标的操作. 该文件位置:在文件结构中 ...
- Berry Jam codeforces 1278C
题目大意: 有两种类型的果酱,一个梯子,从中间开始吃,可以吃左边的,也可以吃右边的,最终要使两种类型的果酱的数量想等 题解: 思路对了,但是没考虑完. 对梯子的左侧的果酱I我们用两个数组记录其从1到i ...
- SpringBoot集成Shiro实现权限控制
Shiro简介 Apache Shiro是一个功能强大且易于使用的Java安全框架,用于执行身份验证,授权,加密和会话管理.使用Shiro易于理解的API,您可以快速轻松地保护任何应用程序-从最小的移 ...
- kubernetes的无状态服务和有状态服务介绍
无状态服务 1)是指该服务运行的实例不会在本地存储需要持久化的数据,并且多个实例对于同一个请求响应的结果是完全一致的 2)多个实例可以共享相同的持久化数据.例如: nginx实例和tomcat实例 3 ...
- [WPF] 考古Expression Web:微软当年最漂亮的WPF软件
1. 什么是Expression Web Expression Studio是微软在2007年推出的一套针对设计师的套件,其中包含专业的设计工具和新技术,可以弹性且自由地将设计方案转为实际--无论设计 ...
- jQuery的attr和prop属性
<div id="div1"></div> attr: 首先是一个参数的attr. $("#div").attr("id&qu ...
- Python自学从入门到就业之函数基础(小白必看)
函数介绍 <1>什么是函数 请看如下代码: print(" _ooOoo_ ") print(" o8888888o ") print(" ...