tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=None,,labels=None,logits=None,name=None)
logits和labels必须有相同的类型和大小

参数:
_sentinel:内部的并不使用
labels:和logits的shape和type一样
logits:类型为float32或者float64
name:操作的名称,可省 返回的是:一个张量,和logits的大小一致。是逻辑损失

sample

import numpy as np
import tensorflow as tf labels=np.array([[1.,0.,0.],[0.,1.,0.],[0.,0.,1.]])
logits=np.array([[11.,8.,7.],[10.,14.,3.],[1.,2.,4.]]) y_pred=tf.math.sigmoid(logits)
prob_error1=-labels*tf.math.log(y_pred)-(1-labels)*tf.math.log(1-y_pred) labels1=np.array([[0.,1.,0.],[1.,1.,0.],[0.,0.,1.]])#不一定只属于一个类别
logits1=np.array([[1.,8.,7.],[10.,14.,3.],[1.,2.,4.]])
y_pred1=tf.math.sigmoid(logits1)
prob_error11=-labels1*tf.math.log(y_pred1)-(1-labels1)*tf.math.log(1-y_pred1) with tf.compat.v1.Session() as sess:
print("1:")
print(sess.run(prob_error1))
print("2:")
print(sess.run(prob_error11))
print("3:")
print(sess.run(tf.nn.sigmoid_cross_entropy_with_logits(labels=labels,logits=logits)))
print("4:")
print(sess.run(tf.nn.sigmoid_cross_entropy_with_logits(labels=labels1,logits=logits1)))

output

1和3,2和4结果一样
1:
[[1.67015613e-05 8.00033541e+00 7.00091147e+00]
[1.00000454e+01 8.31528373e-07 3.04858735e+00]
[1.31326169e+00 2.12692801e+00 1.81499279e-02]]
2:
[[1.31326169e+00 3.35406373e-04 7.00091147e+00]
[4.53988992e-05 8.31528373e-07 3.04858735e+00]
[1.31326169e+00 2.12692801e+00 1.81499279e-02]]
3:
[[1.67015613e-05 8.00033541e+00 7.00091147e+00]
[1.00000454e+01 8.31528373e-07 3.04858735e+00]
[1.31326169e+00 2.12692801e+00 1.81499279e-02]]
4:
[[1.31326169e+00 3.35406373e-04 7.00091147e+00]
[4.53988992e-05 8.31528373e-07 3.04858735e+00]
[1.31326169e+00 2.12692801e+00 1.81499279e-02]]

tf.nn.sigmoid_cross_entropy_with_logits 分类的更多相关文章

  1. tf.nn.sigmoid_cross_entropy_with_logits

    tf.nn.sigmoid_cross_entropy_with_logits sigmoid_cross_entropy_with_logits( _sentinel=None, labels=No ...

  2. tf.nn.softmax 分类

    tf.nn.softmax(logits,axis=None,name=None,dim=None) 参数: logits:一个非空的Tensor.必须是下列类型之一:half, float32,fl ...

  3. tf.nn.softmax_cross_entropy_with_logits 分类

    tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 参数: logits:就是神经网络最后一层的输出,如果有batch ...

  4. Tensorflow BatchNormalization详解:4_使用tf.nn.batch_normalization函数实现Batch Normalization操作

    使用tf.nn.batch_normalization函数实现Batch Normalization操作 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearnin ...

  5. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  6. 深度学习原理与框架-CNN在文本分类的应用 1.tf.nn.embedding_lookup(根据索引数据从数据中取出数据) 2.saver.restore(加载sess参数)

    1. tf.nn.embedding_lookup(W, X) W的维度为[len(vocabulary_list), 128], X的维度为[?, 8],组合后的维度为[?, 8, 128] 代码说 ...

  7. 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)

    1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...

  8. tensorflow 笔记10:tf.nn.sparse_softmax_cross_entropy_with_logits 函数

    函数:tf.nn.sparse_softmax_cross_entropy_with_logits(_sentinel=None,labels=None,logits=None,name=None) ...

  9. 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)

    1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...

随机推荐

  1. Java8 Stream流

    第三章 Stream流 <Java8 Stream编码实战>的代码全部在https://github.com/yu-linfeng/BlogRepositories/tree/master ...

  2. scrapy框架xpath的几点说明

    1.xpath返回的是一个列表 2.调用Selector对象的extract方法将返回选中内容的Unicode字符串 SelectorList对象调用extract_first() 方法会返回其中第一 ...

  3. 4L-线性表之数组

    关注公众号 MageByte,设置星标点「在看」是我们创造好文的动力.后台回复 "加群" 进入技术交流群获更多技术成长. 数组对于每一门编程语言来说都是重要的数据结构之一,当然不同 ...

  4. python基础知识1——简介与入门

    什么是Python:Python能做什么:安装与更新:第一个Python程序:变量:pyc字节码:编码:条件和循环:Python运算符:算数,比较,赋值,位,逻辑::::::::::::::::::: ...

  5. MySQL学习(5)

    三 触发器 对某个表进行某种操作(如:增删改查),希望触发某个动作,可以使用触发器. 1.创建触发器 create trigger trigger1_before_insert_tb1 before ...

  6. WEB应用之httpd基础入门(四)

    前文我们聊到了httpd的虚拟主机实现,状态页的实现,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/12570900.html:今天我们来聊一聊后面的常用基础配 ...

  7. MySQL5.7 import表结构报错超出表空间界限

    事后测试了一下,一下方法就是垃圾,看看可以,别跟着学!!! 数据库重启后,问题依然暴露出来了,参数什么的都是扯,擦 记录一个困扰我好几天的问题.先贴上报错: space name jxtms/Cost ...

  8. 图像的特征工程:HOG特征描述子的介绍

    介绍 在机器学习算法的世界里,特征工程是非常重要的.实际上,作为一名数据科学家,这是我最喜欢的方面之一!从现有特征中设计新特征并改进模型的性能,这就是我们进行最多实验的地方. 世界上一些顶级数据科学家 ...

  9. 如何有效的阅读JDK源码

    阅读Java源码的前提条件: 1.技术基础 在阅读源码之前,我们要有一定程度的技术基础的支持. 假如你从来都没有学过Java,也没有其它编程语言的基础,上来就啃<Core Java>,那样 ...

  10. 【纯净镜像】原版Windows7集成USB3.0+NVME补丁+UEFI引导旗舰版下载

    系统简述: 1. 基于MSDN原版Windows7 Ultimate With SP1系统制作,无任何插件和垃圾软件. 2. 系统集成IE11浏览器,装完系统后默认浏览器就是IE11. 3.系统注入了 ...