tf.nn.sigmoid_cross_entropy_with_logits 分类
tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=None,,labels=None,logits=None,name=None)
logits和labels必须有相同的类型和大小
参数:
_sentinel:内部的并不使用
labels:和logits的shape和type一样
logits:类型为float32或者float64
name:操作的名称,可省
返回的是:一个张量,和logits的大小一致。是逻辑损失
sample
import numpy as np
import tensorflow as tf
labels=np.array([[1.,0.,0.],[0.,1.,0.],[0.,0.,1.]])
logits=np.array([[11.,8.,7.],[10.,14.,3.],[1.,2.,4.]])
y_pred=tf.math.sigmoid(logits)
prob_error1=-labels*tf.math.log(y_pred)-(1-labels)*tf.math.log(1-y_pred)
labels1=np.array([[0.,1.,0.],[1.,1.,0.],[0.,0.,1.]])#不一定只属于一个类别
logits1=np.array([[1.,8.,7.],[10.,14.,3.],[1.,2.,4.]])
y_pred1=tf.math.sigmoid(logits1)
prob_error11=-labels1*tf.math.log(y_pred1)-(1-labels1)*tf.math.log(1-y_pred1)
with tf.compat.v1.Session() as sess:
print("1:")
print(sess.run(prob_error1))
print("2:")
print(sess.run(prob_error11))
print("3:")
print(sess.run(tf.nn.sigmoid_cross_entropy_with_logits(labels=labels,logits=logits)))
print("4:")
print(sess.run(tf.nn.sigmoid_cross_entropy_with_logits(labels=labels1,logits=logits1)))
output
1和3,2和4结果一样
1:
[[1.67015613e-05 8.00033541e+00 7.00091147e+00]
[1.00000454e+01 8.31528373e-07 3.04858735e+00]
[1.31326169e+00 2.12692801e+00 1.81499279e-02]]
2:
[[1.31326169e+00 3.35406373e-04 7.00091147e+00]
[4.53988992e-05 8.31528373e-07 3.04858735e+00]
[1.31326169e+00 2.12692801e+00 1.81499279e-02]]
3:
[[1.67015613e-05 8.00033541e+00 7.00091147e+00]
[1.00000454e+01 8.31528373e-07 3.04858735e+00]
[1.31326169e+00 2.12692801e+00 1.81499279e-02]]
4:
[[1.31326169e+00 3.35406373e-04 7.00091147e+00]
[4.53988992e-05 8.31528373e-07 3.04858735e+00]
[1.31326169e+00 2.12692801e+00 1.81499279e-02]]
tf.nn.sigmoid_cross_entropy_with_logits 分类的更多相关文章
- tf.nn.sigmoid_cross_entropy_with_logits
tf.nn.sigmoid_cross_entropy_with_logits sigmoid_cross_entropy_with_logits( _sentinel=None, labels=No ...
- tf.nn.softmax 分类
tf.nn.softmax(logits,axis=None,name=None,dim=None) 参数: logits:一个非空的Tensor.必须是下列类型之一:half, float32,fl ...
- tf.nn.softmax_cross_entropy_with_logits 分类
tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 参数: logits:就是神经网络最后一层的输出,如果有batch ...
- Tensorflow BatchNormalization详解:4_使用tf.nn.batch_normalization函数实现Batch Normalization操作
使用tf.nn.batch_normalization函数实现Batch Normalization操作 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearnin ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- 深度学习原理与框架-CNN在文本分类的应用 1.tf.nn.embedding_lookup(根据索引数据从数据中取出数据) 2.saver.restore(加载sess参数)
1. tf.nn.embedding_lookup(W, X) W的维度为[len(vocabulary_list), 128], X的维度为[?, 8],组合后的维度为[?, 8, 128] 代码说 ...
- 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...
- tensorflow 笔记10:tf.nn.sparse_softmax_cross_entropy_with_logits 函数
函数:tf.nn.sparse_softmax_cross_entropy_with_logits(_sentinel=None,labels=None,logits=None,name=None) ...
- 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...
随机推荐
- STM32时钟配置方法
一.在STM32中,有五个时钟源,为HSI.HSE.LSI.LSE.PLL. ①HSI是高速内部时钟,RC振荡器,频率为8MHz. ②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率 ...
- Docker容器中使用Redis
加载镜像 查询官方镜像及其版本信息 $ docker search redis 加载最新镜像 $ docker pull redis:lastest 查看本地镜像 $ docker images RE ...
- MyBatis框架——动态SQL
MyBatis 作为⼀个“半⾃动化”的 ORM 框架,需要开发者⼿动定义 SQL 语句. 在业务需求⽐较复杂的情 况下,⼿动拼接 SQL 语句的⼯作量会⾮常⼤,为了适⽤于不同的业务需求,往往需要做很多 ...
- shell编程之字符串处理
# .#号截取,删除左边字符,保留右边字符,*// 表示从左边开始删除第一个 // 号及左边的所有字符 echo ${var#*//} # . ## 号截取,删除左边字符,保留右边字符,##*/ 表示 ...
- hdu4107Gangster 线段树
题目链接:http://icpc.njust.edu.cn/Problem/Hdu/4107/ 题目给定一个初始值都是零的序列,操作只有一种,就是给一个区间加上一个数,但是当一个数大于等于给定的P的时 ...
- 【bzoj2049】[Sdoi2008]Cave 洞穴勘测——线段树上bfs求可撤销并查集
题面 2049: [Sdoi2008]Cave 洞穴勘测 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 12030 Solved: 6024 Desc ...
- 为什么你的程序配了classpath还是找不到类
classpath简介 classpath是java程序时拥有的一个系统变量,这个变量可以通过如下方式获取 System.out.println(System.getProperty("ja ...
- pycharm创建虚拟环境venv和添加依赖库package
1.创建虚拟环境 因为项目采用不同版本的python,所依赖的库的版本也不一样,为了避免版本冲突,为每一个项目每个python版本创建一个虚拟环境,环境中所使用的依赖库也是独立存在,不会被其他版本或其 ...
- 性能测试工具Jmeter你所不知道的内幕
谈到性能测试,大家一定会联想到Jmeter和LoadRunner,这两款工具目前在国内使用的相当广泛,主要原因是Jmeter是开源免费,LoadRunner 11在现网中存在破解版本.商用型性能测试工 ...
- Building Applications with Force.com and VisualForce(Dev401)(十一):Designing Applications for Multiple Users: Proseving Data Quality
Dev401-012:Proseving Data Quality Universal Containers Scenario1.Universal Containers(UC) wants to e ...