Helvetic Coding Contest 2019

A2

题意:给一个长度为 n 的01序列 y。认为 k 合法当且仅当存在一个长度为 n 的01序列 x,使得 x 异或 x 循环右移 k 位的 01 串得到 y 。问合法的 k 的个数。 \(n \le 2*10^5\)

key:找规律

考虑如何check一个 k 是否合法。那么对于所有的 i 和 i-k 在模 n 的意义下,如果 y 的第 i 位为 0 则二者必须不同,否则必须相同。这样可以用并查集判断是否合法。实际上是把相同的缩起来后看看是否存在奇环。

仔细观察可以发现实际上只有 i+k*m 这个集合中的点有边,并且形成了一个环,而环的大小就是集合中 1 的个数。

实际上,对于一个 k ,只需要把 1~n 按照模 gcd(k,n) 分成等价类,判断每个等价类中 1 的个数即可。所以只需要对 n 的每个约数做预处理。复杂度 \(O(n\sqrt n)\)

B2

题意:给一个带权二分图,边权均为 k 。可以加若干个右部点连向所有左部点,边权为 h。求二分图最小权匹配。 \(n \le 1000\)

key:二分图

实际上只有两种情况:全部匹配,花费为 n*h。或者不加新点,花费为匹配数*k。证明比较显然。写这个题主要是当时傻逼了……

E1

题意:给一个带权无向图。定义 \(E_{\max}(c_i)\) 是把第 i 条边的边权最大修改成多大,使得它可能出现在最小生成树中。求 \(E_{\max}(c_1)\)。 \(n \le 10^5\)

key:最小生成树

有一个易证的结论:若某边可以出现在最小生成树中,那么把严格小于该边边权的所有边加入图中,该边的两个端点仍然处于两个联通块中。

E2

题意:对于所有非树边,求上题中的 \(E_{\max}(c_i)\)。保证最小生成树唯一。 \(n \le 10^5\)

key:最小生成树

因为最小生成树唯一,所以还是有一个易证的结论:一条非树边的答案为对应最小生成树的链上最大值。

E3

题意:对于所有边,求上题中的 \(E_{\max}(c_i)\)。 \(n \le 10^5\)

key:最小生成树

首先先看非树边,考虑E2的做法以及它为什么在不唯一时仍然成立:对于做出来的一棵最小生成树,非树边的答案显然是大于等于链上最大值的。如果存在一个最小生成树的形态使得在这条链上的最大值更大,那么显然可以把这条边换掉来得到一个更小权的生成树,矛盾。实际上这表明对于最小生成树的任意形态,两点之间的最大值是不变的(NOIP2013 货车运输)

对于树边其实比较简单:如果在生成树上把这条边去掉,会分成两个联通块,考虑所有连接这两个联通块的边,除去它本身最大的那条边即为答案。换句话说,所有覆盖它的非树边中最小的即为答案。这可以用并查集简单的维护。

Helvetic Coding Contest 2019 差A3 C3 D2 X1 X2的更多相关文章

  1. Helvetic Coding Contest 2019 online mirror (teams allowed, unrated)

    http://codeforces.com/contest/1184 A1 找一对整数,使x^x+2xy+x+1=r 变换成一个分式,保证整除 #include<iostream> #in ...

  2. Helvetic Coding Contest 2019

    题目链接:戳我 小注:其中部分(大括号不换行的)代码是BLUESKY007神仙写的. 咕 CF1184 A1 直接枚举,以根号的时间复杂度判断即可.注意x,y都是正整数. #include<io ...

  3. CF 690C3. Brain Network (hard) from Helvetic Coding Contest 2016 online mirror (teams, unrated)

    题目描述 Brain Network (hard) 这个问题就是给出一个不断加边的树,保证每一次加边之后都只有一个连通块(每一次连的点都是之前出现过的),问每一次加边之后树的直径. 算法 每一次增加一 ...

  4. [Helvetic Coding Contest 2017 online mirror]

    来自FallDream的博客,未经允许,请勿转载,谢谢, 第一次在cf上打acm...和同校大佬组队打 总共15题,比较鬼畜,最后勉强过了10题. AB一样的题目,不同数据范围,一起讲吧 你有一个背包 ...

  5. 【Codeforces】Helvetic Coding Contest 2017 online mirror比赛记

    第一次打ACM赛制的团队赛,感觉还行: 好吧主要是切水题: 开场先挑着做五道EASY,他们分给我D题,woc什么玩意,还泊松分布,我连题都读不懂好吗! 果断弃掉了,换了M和J,然后切掉了,看N题: l ...

  6. Helvetic Coding Contest 2016 online mirror A1

    Description Tonight is brain dinner night and all zombies will gather together to scarf down some de ...

  7. Helvetic Coding Contest 2016 online mirror F1

    Description Heidi has finally found the mythical Tree of Life – a legendary combinatorial structure ...

  8. Helvetic Coding Contest 2016 online mirror B1

    Description The zombies are gathering in their secret lair! Heidi will strike hard to destroy them o ...

  9. Helvetic Coding Contest 2016 online mirror C2

    Description Further research on zombie thought processes yielded interesting results. As we know fro ...

随机推荐

  1. FFmpeg的基本使用

    1.FFmpeg理解 (1)FFmpeg是一个视屏.音频编码工具 (2)x项目名称mpeg来源mpeg编码标准,但不局限只能使用mpeg编码标准.FF 表示fast forward (3)被广泛使用. ...

  2. lvm 逻辑卷分区删除恢复

    原因:执行 lvremove /dev/system/lv_trans 删除逻辑分区 恢复: 1.进入到lvm查看元数据 cd /etc/lvm/archive 2.恢复元vg卷组 vgcfgrest ...

  3. mac item2自定义光标移动快捷键,移动行首行尾,按单词跳转

    To jump between words and start/end of lines in iTerm2 follow these steps: iTerm2 -> Preferences ...

  4. Ka/ Ks|同义替换的三种路径|kaks_Calculator|

    生命组学 研究old gene 和 young gene CAI选择信号:CGmutation信号 Neutrality plot:CG3与GC1.GC2的关系:平:mutation:正相关:sele ...

  5. Thread--生产者消费者

    2个生产者,2个消费者,库存容量2 package p_c_allWait.copy; import java.util.LinkedList; import java.util.List; publ ...

  6. Mac系统的SVN客户端:Snail SVN 精简版

    Mac系统的SVN客户端:Snail SVN 精简版 前言 本人在公司中,使用的是windows操作系统,svn客户端自然也就使用tortoise svn.但自从男朋友给我买了台macbook pro ...

  7. oi笔记——抽象的深度优先搜索

    oi笔记--抽象的深度优先搜索 例题: \(N个数中选K个数,选出的和要为sum\) 例题分析: 对于每个点,我们可以按"选"和"不选"进行搜索,如图: 或者0 ...

  8. Linux不进入网卡配置文件更改静态ip

    1.找到网卡配置文件名ls /etc/sysconfig/network-scripts/ 2.备份并查看原始配置文件(若原先有配置IP的,则按照第五点方式修改) 3.修改随机自启和IP地址echo ...

  9. Linux--Centos 下搭建 gitolite

    参考:http://blog.csdn.net/zhangjs0322/article/details/32711211     http://gitolite.com/gitolite/fool_p ...

  10. JavaSE--数字签名之校验签名

    参考:http://blog.csdn.net/dotuian/article/details/51722300 关于keystore的简单介绍 Keytool是一个Java数据证书的管理工具 ,Ke ...