谷歌在文章《Attention is all you need》中提出的transformer模型。如图主要架构:同样为encoder-decoder模式,左边部分是encoder,右边部分是decoder。
TensorFlow代码:https://www.github.com/kyubyong/transformer

用 sentencepiece 进行分词。

Encoder 输入

初始输入为待翻译语句的embedding矩阵,由于句子长度不一致,需要做统一长度处理,长度取maxlength1,不够长的句子padding 0值,句尾加上 </s>

d = 512, [batchsize,maxlen1,d]

考虑到词语间的相对位置信息,还要加上语句的position
encoding,由函数形式直接求出。

PE(pos,2i) = sin(pos/10002i/d)
PE(pos,2i+1) = cos(pos/10002i/d)

Padding的值不做position encoding。 [batchsize,maxlen1,d] ,最终:

encoder input = position encoding + input embedding。
encoder input : [batchsize,maxlen1,d]

Encoder

Encoder 由N = 6个相同的layer连接组成。每个layer中有两个sublayer,分别是multihead
self-attention以及FFN。

Q = K = V = input
MultiHead(Q, K, V) = concat(head1, …, headh)Wo
headi = Attention(QW­iQ,KW­ik,VW­iV)
Attention(Q, K, V) = softmax(QKT/$$sqrt{d}$$) V



softmax前要做key_mask,把pad 0 的地方赋值为-inf,softmax后权重做query mask,赋值0。

h = 8
W­iQ, W­ik, W­iV : [d, d/h]
Q : [maxlen_q, d]
K = V : [maxlen_k, d]
Maxlen_q = maxlen_k so: Q = K = V : [maxlen1, d]
QW­kQ,KW­ik,VW­iV : [maxlen1, d/h]
headi : [maxlen1, d/h] * [d/h, maxlen1] * [maxlen1, d/h] = [maxlen1, d/h]
Wo : [d, d]
MultiHead(Q,K,V): [maxlen, d]

Softmax([maxlen_q, maxlen_k]) 在最后一个维度即 maxlen_k 上做 softmax
position-wise是因为处理的attention输出是某一个位置i的attention输出。

FFN(x) = ReLU ( xW1 + b1 ) * W2 + b2
ReLU(x) = max( 0, x )
dff = 4 * d = 2048
W1 : [d, dff]
W2 : [dff, d]

流程:

Input -> dropout ->
(
multihead self-attention -> dropout -> residual connection -> LN ->
FFN-> dropout -> residual connection -> LN ->
) * 6
-> memory [batchsize,maxlen,d]

代码中在multihead attention中对score做dropout,FFN后没有dropout,但文章说每个sublayer的output都有一个dropout。

大专栏  Transformer详解:各个特征维度分析推导"#Decoder-输入" class="headerlink" title="Decoder 输入">Decoder 输入

训练

目标句子首尾分别加上 <s> , </s>

Decoder input = Output embedding + position encoding
Decoder input : [batchsize,maxlen2,d]

预测

初始向量为<s>对应embedding,之后将前一步的输出拼接到当前的所有预测构成当前的decoder输入。

Decoder

Decoder由N = 6 个相同的layer组成,每个layer中有三个sublayer,分别是multihead self-attention, mutihead attention以及FFN。

decoder input -> dropout ->
(
Masked multihead self-attention(dec, dec, dec) = dec-> dropout ->
multihead attention(dec, memory, memory) -> dropout -> residual connection
-> LN -> FFN -> dropout -> residual connection -> LN ->
) * 6
-> dec -> linear -> softmax

Self-attention 的mask为一个和dec相同维度的上三角全为-inf的矩阵。

Linear( x ) = xW
Dec : [batchsize,maxlen2,d]
W : [d, vocabsize]

W为词汇表embedding矩阵的转置, 输入输出的词汇表embedding矩阵为W。即三个参数共享。

Linear( x ) : [batchsize,maxlen2,vocabsize]

Softmax函数:

$pleft( k|x right)=frac{exp({{z}_{k}})}{sumnolimits_{i=1}^{K}{exp ({{z}_{i}})}}$

其中zi一般叫做 logits,即未被归一化的对数概率。

损失函数

损失函数:cross entropy。用p代表predicted probability,用q代表groundtruth。即:

$cross_entropy_loss=sumlimits_{k=1}^{K}{qleft( k|xright)log (pleft( k|x right))}$

groundtruth为one-hot,即每个样本只有惟一的类别,$q(k)={{delta}_{k,y}}$,y是真实类别。

${{delta }_{k,y}}text{=}left{begin{matrix} 1,k=y \0,kne y \end{matrix} right.$

对目标句子onehot 做labelmsmooth用$tilde{q}(k|x)$代替$q(k|x)$。(为了正则化,防止过拟合)

$tilde{q}(k|x)=(1-varepsilon ){{delta }_{k,y}}+varepsilon u(k)$

可以理解为,对于$q(k)={{delta}_{k,y}}$函数分布的真实标签,将它变成以如下方式获得:首先从标注的真实标签的$delta$分布中取定,然后以一定的概率$varepsilon$,将其替换为在$u(k)$分布中的随机变量。$u(k)$为均匀分布,即$u(k)=1/K$

优化方法

Adam优化器:

学习率使用warm up learning rate:

learningrate = dmodel-0.5 * min ( step_num-0.5, step_num * warmup_steps-1.5 )
warmup_steps :4000

Transformer详解:各个特征维度分析推导的更多相关文章

  1. Android应用AsyncTask处理机制详解及源码分析

    1 背景 Android异步处理机制一直都是Android的一个核心,也是应用工程师面试的一个知识点.前面我们分析了Handler异步机制原理(不了解的可以阅读我的<Android异步消息处理机 ...

  2. Java SPI机制实战详解及源码分析

    背景介绍 提起SPI机制,可能很多人不太熟悉,它是由JDK直接提供的,全称为:Service Provider Interface.而在平时的使用过程中也很少遇到,但如果你阅读一些框架的源码时,会发现 ...

  3. Spring Boot启动命令参数详解及源码分析

    使用过Spring Boot,我们都知道通过java -jar可以快速启动Spring Boot项目.同时,也可以通过在执行jar -jar时传递参数来进行配置.本文带大家系统的了解一下Spring ...

  4. 【转载】Android应用AsyncTask处理机制详解及源码分析

    [工匠若水 http://blog.csdn.net/yanbober 转载烦请注明出处,尊重分享成果] 1 背景 Android异步处理机制一直都是Android的一个核心,也是应用工程师面试的一个 ...

  5. 线程池底层原理详解与源码分析(补充部分---ScheduledThreadPoolExecutor类分析)

    [1]前言 本篇幅是对 线程池底层原理详解与源码分析  的补充,默认你已经看完了上一篇对ThreadPoolExecutor类有了足够的了解. [2]ScheduledThreadPoolExecut ...

  6. Attention和Transformer详解

    目录 Transformer引入 Encoder 详解 输入部分 Embedding 位置嵌入 注意力机制 人类的注意力机制 Attention 计算 多头 Attention 计算 残差及其作用 B ...

  7. SpringMVC异常处理机制详解[附带源码分析]

    目录 前言 重要接口和类介绍 HandlerExceptionResolver接口 AbstractHandlerExceptionResolver抽象类 AbstractHandlerMethodE ...

  8. Linux 链接详解----静态链接实例分析

    由Linux链接详解(1)中我们简单的分析了静态库的引用解析和重定位的内容, 下面我们结合实例来看一下静态链接重定位过程. /* * a.c */ ; void add(int c); int mai ...

  9. HTTP协议详解之http请求分析

    当今web程序的开发技术真是百家争鸣,ASP.NET, PHP, JSP,Perl, AJAX 等等. 无论Web技术在未来如何发展,理解Web程序之间通信的基本协议相当重要, 因为它让我们理解了We ...

随机推荐

  1. mysql 基本知识 以及优化

    msql的索引应用 1.hash索引  等于值比较时 2.tree索引  范围比较 like '%%'

  2. 15)png图片旋转贴图

    1)基本代码展示  还是上一个那个总代码: #include<Windows.h> #include<gdiplus.h>//GDI+的头文件 using namespace ...

  3. linux安装java步骤

    本文转发自博客园-Q鱼丸粗面Q.博客园-郁冬的文章,内容略有改动 本文已收录至博客专栏linux安装各种软件及配置环境教程中 方式一:yum方式下载安装 1.查找java相关的列表 yum -y li ...

  4. python3 subprocess 内存操作视频转换流格式

    import subprocessout = open('./tmp/sss.mp4','rb').read()p = subprocess.Popen(["./ffmpeg",& ...

  5. <黑马新秀>Spring学习日志

    # 用于梳理Spring知识点 Spring是分层的Java EE应用全栈轻量级开源框架,以IoC(Inverse Of Control反转控制)和AOP(Aspect Oriented Progra ...

  6. 如何离开/退出/停用Python virtualenv

    我正在使用virtualenv和virtualenvwrapper. 我可以使用workon命令在virtualenv之间切换. me@mymachine:~$ workon env1 (env1)m ...

  7. 可用的 .net core 支持 RSA 私钥加密工具类

    首先说明 MS并不建议私钥加密,而且.net 于安全的考虑,RSACryptoServiceProvider类解密时只有同时拥有公钥和私钥才可以,原因是公钥是公开的,会被多人持有,这样的数据传输是不安 ...

  8. Pickle的简单使用

    单词Pickle的中文意思是“泡菜.腌菜.菜酱”的意思,Pickle是Python的一个包,主要功能是对数据进行序列化和反序列化.那么什么叫序列化和反序列化呢? 其序列化过程就是把数据转化成二进制数据 ...

  9. php time()时间戳作为文件名产生文件同名的bug

    /*time()函数生成的文件名可能是相同的,因为如果php运行的过程如果足够快,time()函数调用的足够频繁,那么有可能time()生成的时间戳会相同,因为时间戳是以秒为单位,所以如果足够频繁有可 ...

  10. hashlib python 加密框架

    python3中digest()和hexdigest()区别 转自:https://www.cnblogs.com/yrxns/p/7727471.html hashlib是涉及安全散列和消息摘要,提 ...