TensorFlow-keras fit的callbacks参数,定值保存模型
from tensorflow.python.keras.preprocessing.image import load_img,img_to_array
from tensorflow.python.keras.models import Sequential,Model
from tensorflow.python.keras.layers import Dense,Flatten,Input
import tensorflow as tf
from tensorflow.python.keras.losses import sparse_categorical_crossentropy
from tensorflow.python import keras
import os
import numpy as np class SingleNN(object): #建立神经网络模型
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28,28)),
keras.layers.Dense(128,activation=tf.nn.relu),
keras.layers.Dense(10,activation=tf.nn.softmax)
]) def __init__(self):
(self.x_train,self.y_train),(self.x_test,self.y_test) = keras.datasets.fashion_mnist.load_data()
#归一化
self.x_train = self.x_train/255.0
self.x_test = self.x_test/255.0 def singlenn_compile(self):
'''
编译模型优化器、损失、准确率
:return:
'''
SingleNN.model.compile(
optimizer=keras.optimizers.SGD(lr=0.01),
loss=keras.losses.sparse_categorical_crossentropy,
metrics=['accuracy']
) def singlenn_fit(self):
"""
进行fit训练
:return:
"""
# modelcheck = keras.callbacks.ModelCheckpoint("./ckpt/singlenn_{epoch:02d}-{acc:.2f}.h5",
# # monitor="val_acc", #保存损失还是准确率
# # save_best_only=True,
# save_weights_only=True,
# mode = 'auto',
# period = 1
# )
board = keras.callbacks.TensorBoard(log_dir="./graph",write_graph=True)
SingleNN.model.fit(self.x_train,self.y_train,epochs=5,callbacks=[board]) def single_evalute(self):
'''
模型评估
:return:
'''
test_loss,test_acc = SingleNN.model.evaluate(self.x_test,self.y_test)
print(test_loss,test_acc) def single_predict(self):
'''
预测结果
:return:
'''
# if os.path.exists("./ckpt/checkpoink"):
# SingleNN.model.load_weights("./ckpt/SingleNN") if os.path.exists("./ckpt/SingleNN.h5"):
SingleNN.model.load_weights("./ckpt/SingleNN.h5") predictions = SingleNN.model.predict(self.x_test) return predictions if __name__ == '__main__':
snn = SingleNN()
snn.singlenn_compile()
snn.singlenn_fit()
snn.single_evalute()
# # SingleNN.model.save_weights("./ckpt/SingleNN")
# SingleNN.model.save_weights("./ckpt/SingleNN.h5")
# predictions = snn.single_predict()
# print(predictions)
# result = np.argmax(predictions,axis=1)
# print(result)
TensorFlow-keras fit的callbacks参数,定值保存模型的更多相关文章
- TensorFlow笔记四:从生成和保存模型 -> 调用使用模型
TensorFlow常用的示例一般都是生成模型和测试模型写在一起,每次更换测试数据都要重新训练,过于麻烦, 以下采用先生成并保存本地模型,然后后续程序调用测试. 示例一:线性回归预测 make.py ...
- Keras(一)Sequential与Model模型、Keras基本结构功能
keras介绍与基本的模型保存 思维导图 1.keras网络结构 2.keras网络配置 3.keras预处理功能 模型的节点信息提取 config = model.get_config() 把mod ...
- sklearn保存模型-【老鱼学sklearn】
训练好了一个Model 以后总需要保存和再次预测, 所以保存和读取我们的sklearn model也是同样重要的一步. 比如,我们根据房源样本数据训练了一下房价模型,当用户输入自己的房子后,我们就需要 ...
- 转sklearn保存模型
训练好了一个Model 以后总需要保存和再次预测, 所以保存和读取我们的sklearn model也是同样重要的一步. 比如,我们根据房源样本数据训练了一下房价模型,当用户输入自己的房子后,我们就需要 ...
- [TensorFlow 2] [Keras] fit()、fit_generator() 和 train_on_batch() 分析与应用
前言 是的,除了水报错文,我也来写点其他的.本文主要介绍Keras中以下三个函数的用法: fit()fit_generator()train_on_batch()当然,与上述三个函数相似的evalua ...
- TensorFlow 训练好模型参数的保存和恢复代码
TensorFlow 训练好模型参数的保存和恢复代码,之前就在想模型不应该每次要个结果都要重新训练一遍吧,应该训练一次就可以一直使用吧. TensorFlow 提供了 Saver 类,可以进行保存和恢 ...
- Deep Learning 32: 自己写的keras的一个callbacks函数,解决keras中不能在每个epoch实时显示学习速率learning rate的问题
一.问题: keras中不能在每个epoch实时显示学习速率learning rate,从而方便调试,实际上也是为了调试解决这个问题:Deep Learning 31: 不同版本的keras,对同样的 ...
- 100天搞定机器学习|day40-42 Tensorflow Keras识别猫狗
100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0. ...
- Keras框架下的保存模型和加载模型
在Keras框架下训练深度学习模型时,一般思路是在训练环境下训练出模型,然后拿训练好的模型(即保存模型相应信息的文件)到生产环境下去部署.在训练过程中我们可能会遇到以下情况: 需要运行很长时间的程序在 ...
随机推荐
- java web综合案例
1.采用的技术: bootstrap+jsp+servlet+三层架构(servlet,service,dao)+mysql 注意:mysql使用的是5.5版本,使用高版本会有很多问题.可以将5.5版 ...
- MATLAB——文件读写(2)
一.importdata函数 1. txt 如图,提取经纬度. 程序如下 clear all test=importdata('经纬度.txt'); [r,c]=size(test.data);%ro ...
- 个人项目:WordCount (Java)
一.Github项目地址 https://github.com/misterchaos/WordCount 二.解题思路 2.1 基本需求分析 经过仔细阅读题目,分析得出项目的基本需求如下: wc.e ...
- Python3安装Crypto加密包
Python3安装Crypto加密包 下载链接 加密包地址 步骤 下载加密包,解压加密包到Python安装目录下Lib\site-packages目录中,尝试在Pycharm中导入 from Cryp ...
- Q - 迷宫问题 POJ - 3984(BFS / DFS + 记录路径)
Q - 迷宫问题 POJ - 3984 定义一个二维数组: int maze[5][5] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, ...
- Window.requestAnimationFrame()动画更新
概述 Window.requestAnimationFrame()方法告诉浏览器你希望执行动画,并且再下一次重绘之前要求浏览器调用一个特定的函数去更新动画.该方法把一个回调函数作为参数,该回调函数会在 ...
- dis反汇编查看实现
dis库是python(默认的CPython)自带的一个库,可以用来分析字节码 >>> import dis >>> def add(a, b = 0): ... ...
- .gitattributes
.gitattributes文件是一个文本文件,文件中的一行定义一个路径的若干属性.以行为单位设置一个路径下所有文件的属性,格式如下: 要匹配的文件模式 属性1 属性2 GRLF和LF CRLF,LF ...
- 将本地项目关联到git上面
1.github上面创建新项目 2.初始化项目-------------可忽略 首先加入git提交忽略的文件.gitignore文件 .idea 忽略以.idea文件logs/ 忽略logs文件夹* ...
- C#通用类库整理--序列化类
程序员在编写应用程序的时候往往要将程序的某些数据存储在内存中,然后将其写入某个文件或是将它传输到网络中的另一台计算机上 以实现通讯.这个将程序数据转化成能被存储并传输的格式的过程被称为"序列 ...