from tensorflow.python.keras.preprocessing.image import load_img,img_to_array
from tensorflow.python.keras.models import Sequential,Model
from tensorflow.python.keras.layers import Dense,Flatten,Input
import tensorflow as tf
from tensorflow.python.keras.losses import sparse_categorical_crossentropy
from tensorflow.python import keras
import os
import numpy as np class SingleNN(object): #建立神经网络模型
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28,28)),
keras.layers.Dense(128,activation=tf.nn.relu),
keras.layers.Dense(10,activation=tf.nn.softmax)
]) def __init__(self):
(self.x_train,self.y_train),(self.x_test,self.y_test) = keras.datasets.fashion_mnist.load_data()
#归一化
self.x_train = self.x_train/255.0
self.x_test = self.x_test/255.0 def singlenn_compile(self):
'''
编译模型优化器、损失、准确率
:return:
'''
SingleNN.model.compile(
optimizer=keras.optimizers.SGD(lr=0.01),
loss=keras.losses.sparse_categorical_crossentropy,
metrics=['accuracy']
) def singlenn_fit(self):
"""
进行fit训练
:return:
"""
# modelcheck = keras.callbacks.ModelCheckpoint("./ckpt/singlenn_{epoch:02d}-{acc:.2f}.h5",
# # monitor="val_acc", #保存损失还是准确率
# # save_best_only=True,
# save_weights_only=True,
# mode = 'auto',
# period = 1
# )
board = keras.callbacks.TensorBoard(log_dir="./graph",write_graph=True)
SingleNN.model.fit(self.x_train,self.y_train,epochs=5,callbacks=[board]) def single_evalute(self):
'''
模型评估
:return:
'''
test_loss,test_acc = SingleNN.model.evaluate(self.x_test,self.y_test)
print(test_loss,test_acc) def single_predict(self):
'''
预测结果
:return:
'''
# if os.path.exists("./ckpt/checkpoink"):
# SingleNN.model.load_weights("./ckpt/SingleNN") if os.path.exists("./ckpt/SingleNN.h5"):
SingleNN.model.load_weights("./ckpt/SingleNN.h5") predictions = SingleNN.model.predict(self.x_test) return predictions if __name__ == '__main__':
snn = SingleNN()
snn.singlenn_compile()
snn.singlenn_fit()
snn.single_evalute()
# # SingleNN.model.save_weights("./ckpt/SingleNN")
# SingleNN.model.save_weights("./ckpt/SingleNN.h5")
# predictions = snn.single_predict()
# print(predictions)
# result = np.argmax(predictions,axis=1)
# print(result)

  

TensorFlow-keras fit的callbacks参数,定值保存模型的更多相关文章

  1. TensorFlow笔记四:从生成和保存模型 -> 调用使用模型

    TensorFlow常用的示例一般都是生成模型和测试模型写在一起,每次更换测试数据都要重新训练,过于麻烦, 以下采用先生成并保存本地模型,然后后续程序调用测试. 示例一:线性回归预测 make.py ...

  2. Keras(一)Sequential与Model模型、Keras基本结构功能

    keras介绍与基本的模型保存 思维导图 1.keras网络结构 2.keras网络配置 3.keras预处理功能 模型的节点信息提取 config = model.get_config() 把mod ...

  3. sklearn保存模型-【老鱼学sklearn】

    训练好了一个Model 以后总需要保存和再次预测, 所以保存和读取我们的sklearn model也是同样重要的一步. 比如,我们根据房源样本数据训练了一下房价模型,当用户输入自己的房子后,我们就需要 ...

  4. 转sklearn保存模型

    训练好了一个Model 以后总需要保存和再次预测, 所以保存和读取我们的sklearn model也是同样重要的一步. 比如,我们根据房源样本数据训练了一下房价模型,当用户输入自己的房子后,我们就需要 ...

  5. [TensorFlow 2] [Keras] fit()、fit_generator() 和 train_on_batch() 分析与应用

    前言 是的,除了水报错文,我也来写点其他的.本文主要介绍Keras中以下三个函数的用法: fit()fit_generator()train_on_batch()当然,与上述三个函数相似的evalua ...

  6. TensorFlow 训练好模型参数的保存和恢复代码

    TensorFlow 训练好模型参数的保存和恢复代码,之前就在想模型不应该每次要个结果都要重新训练一遍吧,应该训练一次就可以一直使用吧. TensorFlow 提供了 Saver 类,可以进行保存和恢 ...

  7. Deep Learning 32: 自己写的keras的一个callbacks函数,解决keras中不能在每个epoch实时显示学习速率learning rate的问题

    一.问题: keras中不能在每个epoch实时显示学习速率learning rate,从而方便调试,实际上也是为了调试解决这个问题:Deep Learning 31: 不同版本的keras,对同样的 ...

  8. 100天搞定机器学习|day40-42 Tensorflow Keras识别猫狗

    100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0. ...

  9. Keras框架下的保存模型和加载模型

    在Keras框架下训练深度学习模型时,一般思路是在训练环境下训练出模型,然后拿训练好的模型(即保存模型相应信息的文件)到生产环境下去部署.在训练过程中我们可能会遇到以下情况: 需要运行很长时间的程序在 ...

随机推荐

  1. .NET Core中创建和使用NuGet包

    在.NET Core的项目中,如果我们要在项目中引用其它DLL文件,不应该直接在项目引用中添加DLL文件(虽然在.NET Core项目中也可以这么做),建议是去直接下载DLL文件所属的NuGet包.这 ...

  2. 《闲扯Redis三》Redis五种数据类型之List型

    一.前言 Redis 提供了5种数据类型:String(字符串).Hash(哈希).List(列表).Set(集合).Zset(有序集合),理解每种数据类型的特点对于redis的开发和运维非常重要. ...

  3. sql select sql查询

    select 一.课上练习代码 1 查询所有学生信息 select * from tb_student; select * from tb_teacher; 2 查询所有课程名称及学分(投影和别名) ...

  4. 【poj 2429】GCD & LCM Inverse (Miller-Rabin素数测试和Pollard_Rho_因数分解)

    本题涉及的算法个人无法完全理解,在此提供两个比较好的参考. 原理 (后来又看了一下,其实这篇文章问题还是有的……有时间再搜集一下资料) 代码实现 #include <algorithm> ...

  5. 不可被忽视的操作系统( FreeRTOS )【1】

    把大多数人每个星期的双休过过成了奢侈的节假日放假,把每天23点后定义为自己的自由时间,应该如何去思考这个问题 ? 双休的两天里,不!是放假的两天里,终于有较长的时间好好的学习一下一直断断续续的Free ...

  6. 使用jdbc实现简单的mvc模式的增删改查

    Mvc模式设计: 视图:添加界面(addUser.jsp),修改界面(updateUser.jsp),显示页面(allUser.jsp) 控制器:添加信息控制器(AddUserServlet),修改信 ...

  7. storm学习初步

    本文根据自己的了解,对学习storm所需的一些知识进行汇总,以备之后详细了解. maven工具 参考书目 Maven权威指南 官方文档 Vagrant 分布式开发环境 博客 storm 参考书目 Ge ...

  8. 国内 Java 开发者必备的两个装备,你配置上了么?

    虽然目前越来越多的国产优秀技术产品走出了国门,但是对于众领域的开发者来说,依然对于国外的各种基础资源依赖还是非常的强.所以,一些网络基本技能一直都是我们需要掌握的,但是速度与稳定性问题一直也都有困扰着 ...

  9. POj3017 dp+单调队列优化

    传送门 解题思路: 大力推公式:dp[i]=min(dp[k]+max(k+1,i)){k>=0&&k<i},max(j,i)记为max(a[h]){h>k& ...

  10. python3(三十二) try except

    """ 异常处理 """ __author__on__ = 'shaozhiqi 2019/9/19' # 大量的代码来判断是否出错: # ...