deeplearning.ai 神经网络和深度学习 week2 神经网络基础
1. Logistic回归是用于二分分类的算法。
对于m个样本的训练集,我们可能会习惯于使用for循环一个个处理,但在机器学习中,是把每一个样本写成一个列向量x,然后把m个列向量拼成一个矩阵X。这个矩阵是nx*m大小,nx是每个样本的特征数量,m是样本个数,X.shape=(nx,m)。也可以把特征写成横向量然后竖着拼成m*n的矩阵,NG说前一种列向量的表示方便运算。输出Y是1*m的向量,Y.shape=(1,m)。
把样本表示成矩阵形式后,可以对它进行线性操作wTx+b,由于二分分类的标签为0或1,所以需要把线性变换的值变换到[0, 1]之间,即y_hat = σ(wTx+b),这里σ(z)=1/(1+e-z)就是sigmoid函数。
Loss (error) function描述了预测的输出y_hat和真实的标签y有多接近。误差平方是个很符合直觉的选择,但是不方便梯度下降法求解。在logistic回归中使用的loss funciton是L(y_hat, y) = -( ylog(y_hat) + (1-y)log(1-y_hat) ). 直观地说为什么这个loss function合理呢?如果y=1,L(y_hat ,y)=-ylog(y_hat),L越小越好,所以y_hat越大越好,又因为输出在[0, 1]区间,所以y_hat会趋向于1;如果y=0, L=-log(1-y_hat), y_hat会趋向于0。更深层次的说,这里的loss function描述的是概率的log,而如果每个样本都是独立同分布的,则整体的概率是每个样本概率的累乘,取log之后就是累加。
Loss function描述了单个样本的损失,Cost function描述了在整个样本空间的损失,J(w, b)是所有样本的loss function的平均值。这种方式构造的cost funciton是凸函数,使得优化问题是一个凸优化问题。
Logistic回归可以被看作是非常小的神经网络。
2. 神经网络的计算过程分为前向传播和反向传播,前向传播是计算神经网络的输出,反向传播是计算对应的梯度。
可以用计算图把复杂计算过程拆分成简单计算的堆叠。
在Logistic回归的例子中,算法使用了2个嵌套的for循环,外层for循环遍历所有的样本,内层for循环遍历单个样本内所有的特征。这样做的缺点是for循环效率低,特别是当数据量越来越大的情况下。所以就要使用向量化技术摆脱for循环。
3. 向量化。为计算 z=wTx+b,w和x都是n*1的向量,python中 z=np.dot(w,x)+b 会比for循环快很多(NG随便跑了个例子就相差300倍的耗时)。这是因为这种内置的dot运算更好地利用了并行化计算SIMD(Single Instruction Multiple Data)。相比于CPU,GPU更擅长SIMD。所以只要有可能,就避免使用for循环。
4. python中的broadcasting机制:做加减乘除等运算的时候,自动会把标量,或者小矩阵,扩展成和大矩阵一样的大小,然后元素对元素的运算。这个机制有好有坏,好处是方便,坏处是易错。
一些建议:
1)不推荐使用 a = np.random.randn(5),得到的a是秩为1的数组,a.shape = (5, ),这种数组和行向量、列向量都不一样。
推荐使用 a = np.random.randn(5, 1),这是指明a为列向量,a.shape = (5, 1)。
2)如果不确定矩阵的形状,可以用 assert( a.shape == (5, 1) )。
3)为保险都可以使用 a = a.reshape(5, 1),reshape的计算很快,所以不用担心耗时。
deeplearning.ai 神经网络和深度学习 week2 神经网络基础的更多相关文章
- deeplearning.ai 神经网络和深度学习 week2 神经网络基础 听课笔记
1. Logistic回归是用于二分分类的算法. 对于m个样本的训练集,我们可能会习惯于使用for循环一个个处理,但在机器学习中,是把每一个样本写成一个列向量x,然后把m个列向量拼成一个矩阵X.这个矩 ...
- Deeplearning.ai课程笔记-神经网络和深度学习
神经网络和深度学习这一块内容与机器学习课程里Week4+5内容差不多. 这篇笔记记录了Week4+5中没有的内容. 参考笔记:深度学习笔记 神经网络和深度学习 结构化数据:如数据库里的数据 非结构化数 ...
- 针对深度学习(神经网络)的AI框架调研
针对深度学习(神经网络)的AI框架调研 在我们的AI安全引擎中未来会使用深度学习(神经网络),后续将引入AI芯片,因此重点看了下业界AI芯片厂商和对应芯片的AI框架,包括Intel(MKL CPU). ...
- (转)神经网络和深度学习简史(第一部分):从感知机到BP算法
深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chen ...
- [DeeplearningAI笔记]神经网络与深度学习人工智能行业大师访谈
觉得有用的话,欢迎一起讨论相互学习~Follow Me 吴恩达采访Geoffrey Hinton NG:前几十年,你就已经发明了这么多神经网络和深度学习相关的概念,我其实很好奇,在这么多你发明的东西中 ...
- 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验【中英】
[吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和“AI是新电力”相类似的说法是什么? [ ]AI为我们的家庭和办公室的个人设备供电 ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...
- 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第二周测验【中英】
[中英][吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第二周测验 第2周测验 - 神经网络基础 神经元节点计算什么? [ ]神经元节点先计算激活函数,再计算线性函数(z = Wx + ...
- Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 ...
随机推荐
- HCTF2018-admin
记录一道比较有意思的题目,对于萌新来说能学到很多东西orz.. 三种解法: 1: flask session 伪造 2: unicode欺骗 3: 条件竞争 注册账户查看源码: 发现提示,根据提示和题 ...
- Maven--配置 Maven 从 Nexus 下载构件
在 POM 中配置: <project> ... <repositories> <repository> <id>nexus</id> &l ...
- Dp(NOIp级)全解
2018年(你还真以为我会讲保卫王国2333 LuoguP5020 货币系统 这道题就相当于求{A}的线性基大小 证明: 反证法,设该解为B,那么B定能表示出{A}的线性基,即{A}的线性基中所有数都 ...
- IDEA忽略文件,防止git提交不想提交的文件
IDEA忽略文件,防止git提交不想提交的文件 方法一(只对没有add到仓库的文件有效): 方法二(只对没有add到仓库的文件有效): 在IDEA中安装.ignore插件.创建好了之后: 安装.git ...
- 计蒜客 引爆炸弹(DFS、并查集)
在一个 n×m 的方格地图上,某些方格上放置着炸弹.手动引爆一个炸弹以后,炸弹会把炸弹所在的行和列上的所有炸弹引爆,被引爆的炸弹又能引爆其他炸弹,这样连锁下去. 现在为了引爆地图上的所有炸弹,需要手动 ...
- UVA 125 统计路径条数 FLOYD
这道题目折腾了我一个下午,本来我的初步打算是用SPFA(),进行搜索,枚举出发点,看看能到达某个点多少次,就是出发点到该点的路径数,如果出现环,则置为-1,关键在于这个判环过程,如果简单只找到某个点是 ...
- MySql 相关面试题
1.mysql 慢查询 目的:通过慢查询日志,记录超过指定时间的 SQL 语句,优化 sql 查询 步骤:查看慢查询开启状态-->设置慢查询 http://www.cnblogs.com/luy ...
- c指针(2)
#include<stdio.h> #include<malloc.h> #include<stdlib.h> typedef struct LNode { cha ...
- Gson使用指南(二)
注:此系列基于Gson 2.4. 一.Gson的流式反序列化 自动方式 常用的重载方法: Gson.toJson(Object); Gson.fromJson(Reader,Class); Gson. ...
- 嵌入式开发为什么选择C语言作为开发语言?
了解嵌入式开发的朋友们都非常的清楚其核心的开发语言为C语言,C语言在嵌入式开发的过程中占有十分重要的地位,可以说两者之间“你中有我,我中有你”.但是有很多人会想,有那么多的开发语言为什么会单单的选择C ...