Control flow operations: conditionals and loops

When building complex models such as recurrent neural networks you may need to control the flow of operations through conditionals and loops. In this section we introduce a number of commonly used control flow ops.

Let’s assume you want to decide whether to multiply to or add two given tensors based on a predicate. This can be simply implemented with tf.cond which acts as a python “if” function:

a = tf.constant(1)
b = tf.constant(2) p = tf.constant(True) x = tf.cond(p, lambda: a + b, lambda: a * b) print(tf.Session().run(x))

Since the predicate is True in this case, the output would be the result of the addition, which is 3.

Most of the times when using TensorFlow you are using large tensors and want to perform operations in batch. A related conditional operation is tf.where, which like tf.cond takes a predicate, but selects the output based on the condition in batch.

a = tf.constant([1, 1])
b = tf.constant([2, 2]) p = tf.constant([True, False]) x = tf.where(p, a + b, a * b) print(tf.Session().run(x))

This will return [3, 2].

Another widely used control flow operation is tf.while_loop. It allows building dynamic loops in TensorFlow that operate on sequences of variable length. Let’s see how we can generate Fibonacci sequence with tf.while_loops:

n = tf.constant(5)

def cond(i, a, b):
return i < n def body(i, a, b):
return i + 1, b, a + b i, a, b = tf.while_loop(cond, body, (2, 1, 1)) print(tf.Session().run(b))

This will print 5. tf.while_loops takes a condition function, and a loop body function, in addition to initial values for loop variables. These loop variables are then updated by multiple calls to the body function until the condition returns false.

Now imagine we want to keep the whole series of Fibonacci sequence. We may update our body to keep a record of the history of current values:

n = tf.constant(5)

def cond(i, a, b, c):
return i < n def body(i, a, b, c):
return i + 1, b, a + b, tf.concat([c, [a + b]], 0) i, a, b, c = tf.while_loop(cond, body, (2, 1, 1, tf.constant([1, 1]))) print(tf.Session().run(c))

Now if you try running this, TensorFlow will complain that the shape of the the fourth loop variable is changing. So you must make that explicit that it’s intentional:

i, a, b, c = tf.while_loop(
cond, body, (2, 1, 1, tf.constant([1, 1])),
shape_invariants=(tf.TensorShape([]),
tf.TensorShape([]),
tf.TensorShape([]),
tf.TensorShape([None])))

This is not only getting ugly, but is also somewhat inefficient. Note that we are building a lot of intermediary tensors that we don’t use. TensorFlow has a better solution for this kind of growing arrays. Meet tf.TensorArray. Let’s do the same thing this time with tensor arrays:

n = tf.constant(5)

c = tf.TensorArray(tf.int32, n)
c = c.write(0, 1)
c = c.write(1, 1) def cond(i, a, b, c):
return i < n def body(i, a, b, c):
c = c.write(i, a + b)
return i + 1, b, a + b, c i, a, b, c = tf.while_loop(cond, body, (2, 1, 1, c)) c = c.stack() print(tf.Session().run(c))

TensorFlow while loops and tensor arrays are essential tools for building complex recurrent neural networks. As an exercise try implementing beam search using tf.while_loops. Can you make it more efficient with tensor arrays?

更多教程:http://www.tensorflownews.com/

tensorflow 控制流操作,条件判断和循环操作的更多相关文章

  1. Python学习笔记——基础篇【第一周】——变量与赋值、用户交互、条件判断、循环控制、数据类型、文本操作

    目录 Python第一周笔记 1.学习Python目的 2.Python简史介绍 3.Python3特性 4.Hello World程序 5.变量与赋值 6.用户交互 7.条件判断与缩进 8.循环控制 ...

  2. python自学-day2(变量、if条件判断、运算符操作)

    1.变量 变量只是用于保存内存位置,将变量存储在内存中的作用,方便后面调用,这意味着,在创建变量时会在内存中开辟一个空间. 变量命名规则: 由字母.数字.下划线(_)组成 不能以数字开头 不能使用 P ...

  3. 5-3 bash脚本编程之二 条件判断

    1. 条件测试的表达式 1. [ expression ]  :注意这个中括号的前后都有一个空格 2. [[ expression ]] 3. test expression 2.条件判断的类型 1. ...

  4. python Django教程 之模板渲染、循环、条件判断、常用的标签、过滤器

    python3.5 manage.py runserver python Django教程 之模板渲染.循环.条件判断.常用的标签.过滤器 一.Django模板渲染模板 1. 创建一个 zqxt_tm ...

  5. shell 条件判断语句整理

    常用系统变量 1)         $0 当前程式的名称 2)         $n 当前程式的第n个参数,n=1,2,…9 3)         $* 当前程式的任何参数(不包括程式本身) 4)   ...

  6. python基础-编码_if条件判断

    一.第一句Python代码 在 /home/dev/ 目录下创建 hello.py 文件,内容如下: [root@python-3 scripts]# cat hello.py #!/usr/bin/ ...

  7. oracle触发器加条件判断

    oracle触发器加条件判断,如果某个字段,isnode=0,那么不执行下面的方法,数据如下: create or replace trigger tr_basestation_insert_emp ...

  8. bash脚本编程之二 条件判断and 逻辑运算

    1.条件测试结构 1) if/then结构: 判断命令列表的退出码是否为0,0为成功. 如果if和then在条件判断的同一行上的话, 必须使用分号来结束if表达式: if和then都是关键字. 关键字 ...

  9. [Shell]条件判断与流程控制:if, case, for, while, until

    ---------------------------------------------------------------------------------------------------- ...

随机推荐

  1. iPhone6爆炸真是小概率事件吗?

    前不久,央视新闻报道,根据上海市消费者权益保护委员会统计,2016年9月到11月,共接到8名消费者投诉,反映其苹果手机在正常使用或者正常充电的情况下突然爆炸.此外,苹果手机还被投诉存在自动关机等问题, ...

  2. Leetcode 24题 两两交换链表中的节点(Swap Nodes in Pairs))Java语言求解

    题目描述: 给定一个链表,两两交换其中相邻的节点,并返回交换后的链表. 你不能只是单纯的改变节点内部的值,而是需要实际的进行节点交换. 示例: 给定 1->2->3->4,你应该返回 ...

  3. linux安装部署ftp图片服务器

    1.安装http反向代理服务器.安装ftp文件传输组件vsftpd 详细安装及配置参见 https://blog.csdn.net/zhouym/article/details/100145964 2 ...

  4. python数组和字符串互相转换

    字符串转数组 str = '1,2,3' arr = str.split(',') 数组转字符串 arr = ['a','b'] str = ','.join(arr) arr = [1,2,3] s ...

  5. session和el表达式

    2015/1/21 ## 回顾昨天案例 ## # 模拟购物车: >> 基本步骤: |-- 显示所有的书籍: |-- 制作书记列表/模仿数据库: |-- 参见昨天示例: |-- 制作查看详情 ...

  6. iOS 17个常用代码整理

    .判断邮箱格式是否正确的代码: //利用正则表达式验证 -(BOOL)isValidateEmail:(NSString *)email { NSString *emailRegex = @" ...

  7. mysql 学习日记 悲观和乐观锁

    理解  悲观锁就是什么事情都是需要小心翼翼,生怕弄错了出大问题, 一般情况下 "增删改" 都是有事务在进行操作的,但是 "查" 是不需要事务操作的, 但是凡事没 ...

  8. 三星最先进EUV产线投用

    近日,三星宣布,在韩国华城工业园新开一条专司 EUV(极紫外光刻)技术的晶圆代工产线 V1,最次量产 7nm. 据悉,V1 产线/工厂 2018 年 2 月动工,2019 年下半年开始测试晶圆生产,首 ...

  9. C++ 随机函数/伪随机函数

    使用rand()函数时,每次随机数都是固定(伪随机数),在前面加上以下函数,每次生成的随机数为随机, srand((int)time(NULL)); rand();

  10. ajax3

    json json:JavaScript对象表示方法(JavaScript object notation) json:是存储和交换文本信息的语法,类似与xml.他使用键值对的方式来组织,易于人们阅读 ...