tensorflow 控制流操作,条件判断和循环操作
Control flow operations: conditionals and loops
When building complex models such as recurrent neural networks you may need to control the flow of operations through conditionals and loops. In this section we introduce a number of commonly used control flow ops.
Let’s assume you want to decide whether to multiply to or add two given tensors based on a predicate. This can be simply implemented with tf.cond which acts as a python “if” function:
a = tf.constant(1)
b = tf.constant(2)
p = tf.constant(True)
x = tf.cond(p, lambda: a + b, lambda: a * b)
print(tf.Session().run(x))
Since the predicate is True in this case, the output would be the result of the addition, which is 3.
Most of the times when using TensorFlow you are using large tensors and want to perform operations in batch. A related conditional operation is tf.where, which like tf.cond takes a predicate, but selects the output based on the condition in batch.
a = tf.constant([1, 1])
b = tf.constant([2, 2])
p = tf.constant([True, False])
x = tf.where(p, a + b, a * b)
print(tf.Session().run(x))
This will return [3, 2].
Another widely used control flow operation is tf.while_loop. It allows building dynamic loops in TensorFlow that operate on sequences of variable length. Let’s see how we can generate Fibonacci sequence with tf.while_loops:
n = tf.constant(5)
def cond(i, a, b):
return i < n
def body(i, a, b):
return i + 1, b, a + b
i, a, b = tf.while_loop(cond, body, (2, 1, 1))
print(tf.Session().run(b))
This will print 5. tf.while_loops takes a condition function, and a loop body function, in addition to initial values for loop variables. These loop variables are then updated by multiple calls to the body function until the condition returns false.
Now imagine we want to keep the whole series of Fibonacci sequence. We may update our body to keep a record of the history of current values:
n = tf.constant(5)
def cond(i, a, b, c):
return i < n
def body(i, a, b, c):
return i + 1, b, a + b, tf.concat([c, [a + b]], 0)
i, a, b, c = tf.while_loop(cond, body, (2, 1, 1, tf.constant([1, 1])))
print(tf.Session().run(c))
Now if you try running this, TensorFlow will complain that the shape of the the fourth loop variable is changing. So you must make that explicit that it’s intentional:
i, a, b, c = tf.while_loop(
cond, body, (2, 1, 1, tf.constant([1, 1])),
shape_invariants=(tf.TensorShape([]),
tf.TensorShape([]),
tf.TensorShape([]),
tf.TensorShape([None])))
This is not only getting ugly, but is also somewhat inefficient. Note that we are building a lot of intermediary tensors that we don’t use. TensorFlow has a better solution for this kind of growing arrays. Meet tf.TensorArray. Let’s do the same thing this time with tensor arrays:
n = tf.constant(5)
c = tf.TensorArray(tf.int32, n)
c = c.write(0, 1)
c = c.write(1, 1)
def cond(i, a, b, c):
return i < n
def body(i, a, b, c):
c = c.write(i, a + b)
return i + 1, b, a + b, c
i, a, b, c = tf.while_loop(cond, body, (2, 1, 1, c))
c = c.stack()
print(tf.Session().run(c))
TensorFlow while loops and tensor arrays are essential tools for building complex recurrent neural networks. As an exercise try implementing beam search using tf.while_loops. Can you make it more efficient with tensor arrays?
更多教程:http://www.tensorflownews.com/
tensorflow 控制流操作,条件判断和循环操作的更多相关文章
- Python学习笔记——基础篇【第一周】——变量与赋值、用户交互、条件判断、循环控制、数据类型、文本操作
目录 Python第一周笔记 1.学习Python目的 2.Python简史介绍 3.Python3特性 4.Hello World程序 5.变量与赋值 6.用户交互 7.条件判断与缩进 8.循环控制 ...
- python自学-day2(变量、if条件判断、运算符操作)
1.变量 变量只是用于保存内存位置,将变量存储在内存中的作用,方便后面调用,这意味着,在创建变量时会在内存中开辟一个空间. 变量命名规则: 由字母.数字.下划线(_)组成 不能以数字开头 不能使用 P ...
- 5-3 bash脚本编程之二 条件判断
1. 条件测试的表达式 1. [ expression ] :注意这个中括号的前后都有一个空格 2. [[ expression ]] 3. test expression 2.条件判断的类型 1. ...
- python Django教程 之模板渲染、循环、条件判断、常用的标签、过滤器
python3.5 manage.py runserver python Django教程 之模板渲染.循环.条件判断.常用的标签.过滤器 一.Django模板渲染模板 1. 创建一个 zqxt_tm ...
- shell 条件判断语句整理
常用系统变量 1) $0 当前程式的名称 2) $n 当前程式的第n个参数,n=1,2,…9 3) $* 当前程式的任何参数(不包括程式本身) 4) ...
- python基础-编码_if条件判断
一.第一句Python代码 在 /home/dev/ 目录下创建 hello.py 文件,内容如下: [root@python-3 scripts]# cat hello.py #!/usr/bin/ ...
- oracle触发器加条件判断
oracle触发器加条件判断,如果某个字段,isnode=0,那么不执行下面的方法,数据如下: create or replace trigger tr_basestation_insert_emp ...
- bash脚本编程之二 条件判断and 逻辑运算
1.条件测试结构 1) if/then结构: 判断命令列表的退出码是否为0,0为成功. 如果if和then在条件判断的同一行上的话, 必须使用分号来结束if表达式: if和then都是关键字. 关键字 ...
- [Shell]条件判断与流程控制:if, case, for, while, until
---------------------------------------------------------------------------------------------------- ...
随机推荐
- 三个值得期待的JavaScript新功能!
让我们来看看JavaScript中一些有用的即将推出的功能.您将看到他们的语法,链接以及时了解他们的进度,我们将编写一个小型测试套件,以展示如何立即开始使用这些提案! JavaScript是如何更新迭 ...
- js对象中关于this关键字的作用
前两天在前端群看到群友问的一个问题,问题如下: var Name = 'window'; var obj = { Name:'obj字符串', getName:function(){ console. ...
- 内网渗透之权限维持 - MSF
年初九 天公生 0x034 MSF(美少妇) 启动msf msfconsole 先启动msf依赖的postgresql数据库 初始化数据库 msfdb init (要用普通用户) msf路径 /usr ...
- selenium+Python 将登录模块化
公共模块化:(登录) login.py from selenium import webdriver from time import sleep class login(): def u ...
- PHP eval变量延迟赋值
$str = 'and {$prev}name like \'%五子棋%\'';$prev = "table.";eval("\$str = \"$str\&q ...
- CentOS7系统更换软件安装源
1.备份你的原镜像文件,以免出错后可以恢复. cp /etc/yum.repos.d/CentOS-Base.repo{,.backup} # 或者 mv /etc/yum.repos.d/CentO ...
- 使用SharpDevelop配合MonoGame进行游戏开发
SharpDevelop是一款开源的轻量级IDE,它支持众多的语言及项目开发.可以看看支持的项目. 程序本体仅十几MB,打开项目速度飞快. 目前SharpDevelop最高支持C# 5.0,.NET ...
- ajax 瀑布流 demo
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- js 模拟鼠标绘制方块
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- tkinter学习1
GUI 用户交互界面 tkinter 介绍 tkinter是 python自带的gui库,对图像处理库tk的封装 #导入tkinter库 import tkinter #创建主窗口对象 root = ...