参考:http://gpdb.docs.pivotal.io/4390/admin_guide/query/topics/functions-operators.html

Table 4. Advanced Analytic Functions
Function Return Type Full Syntax Description
matrix_add(array[], array[]) smallint[], int[], bigint[], float[] matrix_add( array[[1,1],[2,2]], array[[3,4],[5,6]]) Adds two two-dimensional matrices. The matrices must be conformable.
matrix_multiply( array[], array[]) smallint[]int[], bigint[], float[] matrix_multiply( array[[2,0,0],[0,2,0],[0,0,2]], array[[3,0,3],[0,3,0],[0,0,3]] ) Multiplies two, three- dimensional arrays. The matrices must be conformable.
matrix_multiply( array[], expr) int[], float[] matrix_multiply( array[[1,1,1], [2,2,2], [3,3,3]], 2) Multiplies a two-dimensional array and a scalar numeric value.
matrix_transpose( array[]) Same as input arraytype. matrix_transpose( array [[1,1,1],[2,2,2]]) Transposes a two-dimensional array.
pinv(array []) smallint[]int[], bigint[], float[] pinv(array[[2.5,0,0],[0,1,0],[0,0,.5]]) Calculates the Moore-Penrose pseudoinverse of a matrix.
unnest (array[]) set of anyelement unnest( array['one', 'row', 'per', 'item']) Transforms a one dimensional array into rows. Returns a set ofanyelement, a polymorphic pseudotype in PostgreSQL.
Table 5. Advanced Aggregate Functions
Function Return Type Full Syntax Description
MEDIAN (expr) timestamp, timestampz, interval, float MEDIAN (expression)

Example:

SELECT department_id, MEDIAN(salary)
FROM employees
GROUP BY department_id;
Can take a two-dimensional array as input. Treats such arrays as matrices.
PERCENTILE_CONT (expr) WITHIN GROUP (ORDER BYexpr [DESC/ASC]) timestamp, timestampz, interval, float PERCENTILE_CONT(percentage) WITHIN GROUP (ORDER BY expression)

Example:

SELECT department_id,
PERCENTILE_CONT (0.5) WITHIN GROUP (ORDER BY salary DESC)
"Median_cont";
FROM employees GROUP BY department_id;
Performs an inverse function that assumes a continuous distribution model. It takes a percentile value and a sort specification and returns the same datatype as the numeric datatype of the argument. This returned value is a computed result after performing linear interpolation. Null are ignored in this calculation.
PERCENTILE_DISC (expr) WITHIN GROUP (ORDER BYexpr [DESC/ASC]) timestamp, timestampz, interval, float PERCENTILE_DISC(percentage) WITHIN GROUP (ORDER BY expression)

Example:

SELECT department_id,
PERCENTILE_DISC (0.5) WITHIN GROUP (ORDER BY salary DESC)
"Median_desc";
FROM employees GROUP BY department_id;
Performs an inverse distribution function that assumes a discrete distribution model. It takes a percentile value and a sort specification. This returned value is an element from the set. Null are ignored in this calculation.
sum(array[]) smallint[]int[], bigint[], float[] sum(array[[1,2],[3,4]])

Example:

CREATE TABLE mymatrix (myvalue int[]);
INSERT INTO mymatrix VALUES (array[[1,2],[3,4]]);
INSERT INTO mymatrix VALUES (array[[0,1],[1,0]]);
SELECT sum(myvalue) FROM mymatrix;
sum
---------------
{{1,3},{4,4}}
Performs matrix summation. Can take as input a two-dimensional array that is treated as a matrix.
pivot_sum (label[], label, expr) int[], bigint[], float[] pivot_sum( array['A1','A2'], attr, value) A pivot aggregation using sum to resolve duplicate entries.
mregr_coef(expr, array[]) float[] mregr_coef(y, array[1, x1, x2]) The four mregr_*aggregates perform linear regressions using the ordinary-least-squares method. mregr_coefcalculates the regression coefficients. The size of the return array formregr_coef is the same as the size of the input array of independent variables, since the return array contains the coefficient for each independent variable.
mregr_r2 (expr, array[]) float mregr_r2(y, array[1, x1, x2]) The four mregr_*aggregates perform linear regressions using the ordinary-least-squares method. mregr_r2calculates the r-squared error value for the regression.
mregr_pvalues(expr, array[]) float[] mregr_pvalues(y, array[1, x1, x2]) The four mregr_*aggregates perform linear regressions using the ordinary-least-squares method. mregr_pvaluescalculates the p-values for the regression.
mregr_tstats(expr, array[]) float[] mregr_tstats(y, array[1, x1, x2]) The four mregr_*aggregates perform linear regressions using the ordinary-least-squares method. mregr_tstatscalculates the t-statistics for the regression.
nb_classify(text[], bigint, bigint[], bigint[]) text nb_classify(classes, attr_count, class_count, class_total) Classify rows using a Naive Bayes Classifier. This aggregate uses a baseline of training data to predict the classification of new rows and returns the class with the largest likelihood of appearing in the new rows.
nb_probabilities(text[], bigint, bigint[], bigint[]) text nb_probabilities(classes, attr_count, class_count, class_total) Determine probability for each class using a Naive Bayes Classifier. This aggregate uses a baseline of training data to predict the classification of new rows and returns the probabilities that each class will appear in new rows.

greenplum 数组操作的更多相关文章

  1. Javascript数组操作

    使用JS也算有段时日,然对于数组的使用,总局限于很初级水平,且每每使用总要查下API,或者写个小Demo测试下才算放心,一来二去,浪费不少时间:思虑下,堪能如此继续之?当狠心深学下方是正道. 原文链接 ...

  2. JavaScript jQuery 中定义数组与操作及jquery数组操作

    首先给大家介绍javascript jquery中定义数组与操作的相关知识,具体内容如下所示: 1.认识数组 数组就是某类数据的集合,数据类型可以是整型.字符串.甚至是对象Javascript不支持多 ...

  3. php数组操作集锦- 掌握了数组操作, 也就掌握了php

    参考下面的文章, 是很好的: http://www.cnblogs.com/staven/p/5142515.html http://pcwanli.blog.163.com/blog/static/ ...

  4. JavaScript 数组操作

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. JavaScript中数组操作常用方法

    JavaScript中数组操作常用方法 1.检测数组 1)检测对象是否为数组,使用instanceof 操作符 if(value instanceof Array) { //对数组执行某些操作 } 2 ...

  6. php 常用数组操作

    php常用的数组操作函数,包括数组的赋值.拆分.合并.计算.添加.删除.查询.判断.排序等 array_combine 功能:用一个数组的值作为新数组的键名,另一个数组的值作为新数组的值 <?p ...

  7. 005-Scala数组操作实战详解

    005-Scala数组操作实战详解 Worksheet的使用 交互式命令执行平台 记得每次要保存才会出相应的结果 数组的基本操作 数组的下标是从0开始和Tuple不同 缓冲数组ArrayBuffer( ...

  8. JavaScript中常见的数组操作函数及用法

    JavaScript中常见的数组操作函数及用法 昨天写了个帖子,汇总了下常见的JavaScript中的字符串操作函数及用法.今天正好有时间,也去把JavaScript中常见的数组操作函数及用法总结一下 ...

  9. jQuery_03之事件、动画、类数组操作

    一.事件: 1.模式触发事件:  ①DOM:elem.onXXX();只能触发直接用onXXX绑定的事件处理函数:用addEventistener添加的事件监听无法模拟出发触发:  ②jQuery:$ ...

随机推荐

  1. Codeforces Round #606 (Div. 2) - E. Two Fairs(割点+dfs)

    题意:给你一张无向连通图,对于求有多少对$(x,y)$满足互相到达必须经过$(a,b)$,其中$x\neq a,x\neq b,y\neq a,y\neq b$ 思路:显然$a,b$都必须为割点,所以 ...

  2. 高级T-SQL进阶系列 (二)【上篇】:使用 APPLY操作符

    [译注:此文为翻译,由于本人水平所限,疏漏在所难免,欢迎探讨指正] 原文链接:传送门. 伴随着SQL SERVER 2005的发布,微软增加了一个新的操作符,它允许你将一个记录集与一个函数进行关联,然 ...

  3. print、println、printf的区别(转载)

    printf主要是继承了C语言的printf的一些特性,可以进行格式化输出   print就是一般的标准输出,但是不换行   println和print基本没什么差别,就是最后会换行   System ...

  4. redhat7.6 crontab 服务,周期性任务

    系统默认安装开启 systemctl status crond.service 查看周期性任务(最多每隔1分钟做周期性任务) crontab   -l 系统自身的周期性任务 配置周期性任务 cront ...

  5. 【协作式原创】查漏补缺之乐观锁与悲观锁TODO

    面试官:你了解乐观锁和悲观锁吗? 乐观锁和悲观锁是两种思想,用于解决并发场景下的数据竞争问题. 悲观锁的实现方式是加锁,加锁既可以是对代码块加锁(如Java的synchronized关键字),也可以是 ...

  6. 深度解析Java可变参数类型以及与数组的区别

    注意:可变参数类型是在jdk1.5版本的新特性,数组类型是jdk1.0就有了. 这篇文章主要介绍了Java方法的可变参数类型,通过实例对Java中的可变参数类型进行了较为深入的分析,需要的朋友可以参考 ...

  7. Node.js 阻塞 回调函数

    回调例程 N所有API都支持回调函数,可以处理大量并发请求.回调函数一般作为最后一个参数出现: function foo1(name, age, callback){ } function foo2( ...

  8. Establishing SSL connection without server's identity verification is not recommended. According to MySQL 5.5.45+, 5.6.26+ and 5.7.6+ requirements SSL

    由于mysql版本过高创建连接的时候会出现如下报告 解决办法:在mysql连接上加上&useSSL=true 如下:jdbc:mysql:///:3366:test?useUnicode=tr ...

  9. VS2017+EF6+MySQL8.0配置(.Net Framework 4.5)

     开发环境Vs2017 运行环境:.Net Framework 4.5(win7专业版 64位) 1.下载安装mysql数据库版本:mysql-8.0.19-winx64 ----数据库版本貌似跟My ...

  10. 十 用栈解决LeetCode20题括号的匹配

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAiIAAACWCAYAAADjcONgAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjw