参考:http://gpdb.docs.pivotal.io/4390/admin_guide/query/topics/functions-operators.html

Table 4. Advanced Analytic Functions
Function Return Type Full Syntax Description
matrix_add(array[], array[]) smallint[], int[], bigint[], float[] matrix_add( array[[1,1],[2,2]], array[[3,4],[5,6]]) Adds two two-dimensional matrices. The matrices must be conformable.
matrix_multiply( array[], array[]) smallint[]int[], bigint[], float[] matrix_multiply( array[[2,0,0],[0,2,0],[0,0,2]], array[[3,0,3],[0,3,0],[0,0,3]] ) Multiplies two, three- dimensional arrays. The matrices must be conformable.
matrix_multiply( array[], expr) int[], float[] matrix_multiply( array[[1,1,1], [2,2,2], [3,3,3]], 2) Multiplies a two-dimensional array and a scalar numeric value.
matrix_transpose( array[]) Same as input arraytype. matrix_transpose( array [[1,1,1],[2,2,2]]) Transposes a two-dimensional array.
pinv(array []) smallint[]int[], bigint[], float[] pinv(array[[2.5,0,0],[0,1,0],[0,0,.5]]) Calculates the Moore-Penrose pseudoinverse of a matrix.
unnest (array[]) set of anyelement unnest( array['one', 'row', 'per', 'item']) Transforms a one dimensional array into rows. Returns a set ofanyelement, a polymorphic pseudotype in PostgreSQL.
Table 5. Advanced Aggregate Functions
Function Return Type Full Syntax Description
MEDIAN (expr) timestamp, timestampz, interval, float MEDIAN (expression)

Example:

SELECT department_id, MEDIAN(salary)
FROM employees
GROUP BY department_id;
Can take a two-dimensional array as input. Treats such arrays as matrices.
PERCENTILE_CONT (expr) WITHIN GROUP (ORDER BYexpr [DESC/ASC]) timestamp, timestampz, interval, float PERCENTILE_CONT(percentage) WITHIN GROUP (ORDER BY expression)

Example:

SELECT department_id,
PERCENTILE_CONT (0.5) WITHIN GROUP (ORDER BY salary DESC)
"Median_cont";
FROM employees GROUP BY department_id;
Performs an inverse function that assumes a continuous distribution model. It takes a percentile value and a sort specification and returns the same datatype as the numeric datatype of the argument. This returned value is a computed result after performing linear interpolation. Null are ignored in this calculation.
PERCENTILE_DISC (expr) WITHIN GROUP (ORDER BYexpr [DESC/ASC]) timestamp, timestampz, interval, float PERCENTILE_DISC(percentage) WITHIN GROUP (ORDER BY expression)

Example:

SELECT department_id,
PERCENTILE_DISC (0.5) WITHIN GROUP (ORDER BY salary DESC)
"Median_desc";
FROM employees GROUP BY department_id;
Performs an inverse distribution function that assumes a discrete distribution model. It takes a percentile value and a sort specification. This returned value is an element from the set. Null are ignored in this calculation.
sum(array[]) smallint[]int[], bigint[], float[] sum(array[[1,2],[3,4]])

Example:

CREATE TABLE mymatrix (myvalue int[]);
INSERT INTO mymatrix VALUES (array[[1,2],[3,4]]);
INSERT INTO mymatrix VALUES (array[[0,1],[1,0]]);
SELECT sum(myvalue) FROM mymatrix;
sum
---------------
{{1,3},{4,4}}
Performs matrix summation. Can take as input a two-dimensional array that is treated as a matrix.
pivot_sum (label[], label, expr) int[], bigint[], float[] pivot_sum( array['A1','A2'], attr, value) A pivot aggregation using sum to resolve duplicate entries.
mregr_coef(expr, array[]) float[] mregr_coef(y, array[1, x1, x2]) The four mregr_*aggregates perform linear regressions using the ordinary-least-squares method. mregr_coefcalculates the regression coefficients. The size of the return array formregr_coef is the same as the size of the input array of independent variables, since the return array contains the coefficient for each independent variable.
mregr_r2 (expr, array[]) float mregr_r2(y, array[1, x1, x2]) The four mregr_*aggregates perform linear regressions using the ordinary-least-squares method. mregr_r2calculates the r-squared error value for the regression.
mregr_pvalues(expr, array[]) float[] mregr_pvalues(y, array[1, x1, x2]) The four mregr_*aggregates perform linear regressions using the ordinary-least-squares method. mregr_pvaluescalculates the p-values for the regression.
mregr_tstats(expr, array[]) float[] mregr_tstats(y, array[1, x1, x2]) The four mregr_*aggregates perform linear regressions using the ordinary-least-squares method. mregr_tstatscalculates the t-statistics for the regression.
nb_classify(text[], bigint, bigint[], bigint[]) text nb_classify(classes, attr_count, class_count, class_total) Classify rows using a Naive Bayes Classifier. This aggregate uses a baseline of training data to predict the classification of new rows and returns the class with the largest likelihood of appearing in the new rows.
nb_probabilities(text[], bigint, bigint[], bigint[]) text nb_probabilities(classes, attr_count, class_count, class_total) Determine probability for each class using a Naive Bayes Classifier. This aggregate uses a baseline of training data to predict the classification of new rows and returns the probabilities that each class will appear in new rows.

greenplum 数组操作的更多相关文章

  1. Javascript数组操作

    使用JS也算有段时日,然对于数组的使用,总局限于很初级水平,且每每使用总要查下API,或者写个小Demo测试下才算放心,一来二去,浪费不少时间:思虑下,堪能如此继续之?当狠心深学下方是正道. 原文链接 ...

  2. JavaScript jQuery 中定义数组与操作及jquery数组操作

    首先给大家介绍javascript jquery中定义数组与操作的相关知识,具体内容如下所示: 1.认识数组 数组就是某类数据的集合,数据类型可以是整型.字符串.甚至是对象Javascript不支持多 ...

  3. php数组操作集锦- 掌握了数组操作, 也就掌握了php

    参考下面的文章, 是很好的: http://www.cnblogs.com/staven/p/5142515.html http://pcwanli.blog.163.com/blog/static/ ...

  4. JavaScript 数组操作

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. JavaScript中数组操作常用方法

    JavaScript中数组操作常用方法 1.检测数组 1)检测对象是否为数组,使用instanceof 操作符 if(value instanceof Array) { //对数组执行某些操作 } 2 ...

  6. php 常用数组操作

    php常用的数组操作函数,包括数组的赋值.拆分.合并.计算.添加.删除.查询.判断.排序等 array_combine 功能:用一个数组的值作为新数组的键名,另一个数组的值作为新数组的值 <?p ...

  7. 005-Scala数组操作实战详解

    005-Scala数组操作实战详解 Worksheet的使用 交互式命令执行平台 记得每次要保存才会出相应的结果 数组的基本操作 数组的下标是从0开始和Tuple不同 缓冲数组ArrayBuffer( ...

  8. JavaScript中常见的数组操作函数及用法

    JavaScript中常见的数组操作函数及用法 昨天写了个帖子,汇总了下常见的JavaScript中的字符串操作函数及用法.今天正好有时间,也去把JavaScript中常见的数组操作函数及用法总结一下 ...

  9. jQuery_03之事件、动画、类数组操作

    一.事件: 1.模式触发事件:  ①DOM:elem.onXXX();只能触发直接用onXXX绑定的事件处理函数:用addEventistener添加的事件监听无法模拟出发触发:  ②jQuery:$ ...

随机推荐

  1. redhat7.6 DNS配置正向解析

    1.安装DNS服务 yum install bind yum install bind-chroot 安装完的配置文件/etc/named.conf 启动systemctl start named.s ...

  2. stack的使用-Hdu 1062

    Text Reverse Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  3. liux 防火墙以及开关

    一.service方式 查看防火墙状态: [root@centos6 ~]# service iptables status iptables:未运行防火墙. 开启防火墙: [root@centos6 ...

  4. Python之时间和日期模块

    1.import time 先要导入时间模块 1)time.time()得到当前的时间,返回的是时间戳,表示自1970年1月1日起到程序运行时的秒数 import time print(time.ti ...

  5. python时间序列按频率生成日期的方法

    引用:https://www.zhangshengrong.com/p/281omE7rNw/ 有时候我们的数据是按某个频率收集的,比如每日.每月.每15分钟,那么我们怎么产生对应频率的索引呢?pan ...

  6. sourceTree的忽略文件

    在没有导入项目之前,就要把忽略配置好: *~ .DS_Store xcuserdata

  7. python学习 第一章(说不定会有第零章呢)one day

    ------------恢复内容开始------------ 一.啥是python python是吉尔·范罗苏姆于1989年开发的一个新的脚本解释程序,是ABC语言的一种继承. 二.python的特点 ...

  8. SRS源码——Listener

    1. 整理了一下Listener相关的UML类图:

  9. Django 学习组件分页器与自定制分页器

    一.Django 分页器 1.django的分页器基础版 (1)首先是基础数据分别为 from django.db import models # Create your models here. c ...

  10. C语言笔记 13_排序算法

    排序算法 冒泡排序 冒泡排序(英语:Bubble Sort)是一种简单的排序算法.它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序(如从大到小.首字母从A到Z)错误就把他们交换过来. 过程 ...