hive分区(partition)简介
一、背景
1、在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作。有时候只需要扫描表中关心的一部分数据,因此建表时引入了partition概念。
2、分区表指的是在创建表时指定的partition的分区空间。
3、如果需要创建有分区的表,需要在create表的时候调用可选参数partitioned by,详见表创建的语法结构。
二、技术细节
1、一个表可以拥有一个或者多个分区,每个分区以文件夹的形式单独存在表文件夹的目录下。
2、表和列名不区分大小写。
3、分区是以字段的形式在表结构中存在,通过describe table命令可以查看到字段存在,但是该字段不存放实际的数据内容,仅仅是分区的表示。
4、建表的语法(建分区可参见PARTITIONED BY参数):
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data_type [COMMENT col_comment], ...)] [COMMENT table_comment] [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] [CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] [ROW FORMAT row_format] [STORED AS file_format] [LOCATION hdfs_path]
5、分区建表分为2种,一种是单分区,也就是说在表文件夹目录下只有一级文件夹目录。另外一种是多分区,表文件夹下出现多文件夹嵌套模式。
a、单分区建表语句:create table day_table (id int, content string) partitioned by (dt string);单分区表,按天分区,在表结构中存在id,content,dt三列。
b、双分区建表语句:create table day_hour_table (id int, content string) partitioned by (dt string, hour string);双分区表,按天和小时分区,在表结构中新增加了dt和hour两列。
表文件夹目录示意图(多分区表):
6、添加分区表语法(表已创建,在此基础上添加分区):
ALTER TABLE table_name ADD partition_spec [ LOCATION 'location1' ]
partition_spec [ LOCATION 'location2' ] ... partition_spec: : PARTITION
(partition_col = partition_col_value, partition_col =
partiton_col_value, ...)
用户可以用 ALTER TABLE ADD PARTITION 来向一个表中增加分区。当分区名是字符串时加引号。例:
ALTER TABLE day_table ADD PARTITION (dt='2008-08-08', hour='08')
location '/path/pv1.txt' PARTITION (dt='2008-08-08', hour='09') location
'/path/pv2.txt';
7、删除分区语法:
ALTER TABLE table_name DROP partition_spec, partition_spec,...
用户可以用 ALTER TABLE DROP PARTITION 来删除分区。分区的元数据和数据将被一并删除。例:
ALTER TABLE day_hour_table DROP PARTITION (dt='2008-08-08', hour='09');
8、数据加载进分区表中语法:
LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]
例:
LOAD DATA INPATH '/user/pv.txt' INTO TABLE day_hour_table
PARTITION(dt='2008-08- 08', hour='08'); LOAD DATA local INPATH
'/user/hua/*' INTO TABLE day_hour partition(dt='2010-07- 07');
当数据被加载至表中时,不会对数据进行任何转换。Load操作只是将数据复制至Hive表对应的位置。数据加载时在表下自动创建一个目录,文件存放在该分区下。
9、基于分区的查询的语句:
SELECT day_table.* FROM day_table WHERE day_table.dt>= '2008-08-08';
10、查看分区语句:
hive> show partitions day_hour_table; OK dt=2008-08-08/hour=08 dt=2008-08-08/hour=09 dt=2008-08-09/hour=09
三、总结
1、在 Hive 中,表中的一个 Partition 对应于表下的一个目录,所有的 Partition 的数据都存储在最字集的目录中。
2、总的说来partition就是辅助查询,缩小查询范围,加快数据的检索速度和对数据按照一定的规格和条件进行管理。
——————————————————————————————————————
hive中关于partition的操作:
hive> create table mp (a string) partitioned by (b string, c string);
OK
Time taken: 0.044 seconds
hive> alter table mp add partition (b='1', c='1');
OK
Time taken: 0.079 seconds
hive> alter table mp add partition (b='1', c='2');
OK
Time taken: 0.052 seconds
hive> alter table mp add partition (b='2', c='2');
OK
Time taken: 0.056 seconds
hive> show partitions mp ;
OK
b=1/c=1
b=1/c=2
b=2/c=2
Time taken: 0.046 seconds
hive> explain extended alter table mp drop partition (b='1');
OK
ABSTRACT SYNTAX TREE:
(TOK_ALTERTABLE_DROPPARTS mp (TOK_PARTSPEC (TOK_PARTVAL b '1')))
STAGE DEPENDENCIES:
Stage-0 is a root stage
STAGE PLANS:
Stage: Stage-0
Drop Table Operator:
Drop Table
table: mp
Time taken: 0.048 seconds
hive> alter table mp drop partition (b='1');
FAILED: Error in metadata: table is partitioned but partition spec is not specified or tab: {b=1}
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask
hive> show partitions mp ;
OK
b=1/c=1
b=1/c=2
b=2/c=2
Time taken: 0.044 seconds
hive> alter table mp add partition ( b='1', c = '3') partition ( b='1' , c='4');
OK
Time taken: 0.168 seconds
hive> show partitions mp ;
OK
b=1/c=1
b=1/c=2
b=1/c=3
b=1/c=4
b=2/c=2
b=2/c=3
Time taken: 0.066 seconds
hive>insert overwrite table mp partition (b='1', c='1') select cnt from tmp_et3 ;
hive>alter table mp add columns (newcol string);
location指定目录结构
hive> alter table alter2 add partition (insertdate='2008-01-01') location '2008/01/01';
hive> alter table alter2 add partition (insertdate='2008-01-02') location '2008/01/02';
hive分区(partition)简介的更多相关文章
- hive分区partition(动态和静态分区混合使用; partition的简介)
分区是hive存放数据的一种方式.将列值作为目录来存放数据,就是一个分区.这样where中给出列值时,只需根据列值直接扫描对应目录下的数据,不扫面其他不关心的分区,快速定位,查询节省大量时间.分动态和 ...
- hive分区(partition)
网上有篇关于hive的partition的使用讲解的比较好,转载了:一.背景1.在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作.有时候只需要扫描表中关心的一部分数据, ...
- 大数据系列之数据仓库Hive中分区Partition如何使用
Hive系列博文,持续更新~~~ 大数据系列之数据仓库Hive原理 大数据系列之数据仓库Hive安装 大数据系列之数据仓库Hive中分区Partition如何使用 大数据系列之数据仓库Hive命令使用 ...
- 转载:hive分区(partiton)简介
网上有篇关于hive的partition的使用讲解的比较好,所以转载了.原文https://blog.csdn.net/akon_vm/article/details/37832511 一.背景 1. ...
- hive -- 分区,分桶(创建,修改,删除)
hive -- 分区,分桶(创建,修改,删除) 分区: 静态创建分区: 1. 数据: john doe 10000.0 mary smith 8000.0 todd jones 7000.0 boss ...
- Hive分区(静态分区+动态分区)
Hive分区的概念与传统关系型数据库分区不同. 传统数据库的分区方式:就oracle而言,分区独立存在于段里,里面存储真实的数据,在数据进行插入的时候自动分配分区. Hive的分区方式:由于Hive实 ...
- HIVE基本语法以及HIVE分区
HIVE小结 HIVE基本语法 HIVE和Mysql十分类似 建表规则 CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name da ...
- 关于hive分区,你知道多少呢?
文末查看关键字,回复赠书 一.理论基础 1.Hive分区背景 在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作.有时候只需要扫描表中关心的一部分数据,因此建表时引入 ...
- kafka的log存储解析——topic的分区partition分段segment以及索引等
转自:http://blog.csdn.net/jewes/article/details/42970799 引言 Kafka中的Message是以topic为基本单位组织的,不同的topic之间是相 ...
- kafka的log存储解析——topic的分区partition分段segment以及索引等(转发)
原文 https://www.cnblogs.com/dorothychai/p/6181058.html 引言 Kafka中的Message是以topic为基本单位组织的,不同的topic之间是相互 ...
随机推荐
- BZOJ3144 [Hnoi2013]切糕 【最小割】
题目 输入格式 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...
- bzoj3680吊打GTY
题意:http://www.lydsy.com/JudgeOnline/problem.php?id=3680 sol :吊打出题人(逃~ puts("nan") 出题人题解:h ...
- sql 学习相关问题
---恢复内容开始--- 1.sql上面改变列的数据类型是 ALTER TABLE table_nameALTER COLUMN column_name datatype mysql上面是ALTER ...
- 设置pycharm的python版本
http://blog.csdn.net/github_35160620/article/details/52486986
- poj 1795 DNA Laboratory
DNA Laboratory Time Limit: 5000MS Memory Limit: 30000K Total Submissions: 2892 Accepted: 516 Des ...
- linux之tr
通过使用 tr,您可以非常容易地实现 sed 的许多最基本功能.您可以将 tr 看作为 sed 的(极其)简化的变体:它可以用一个字符来替换另一个字符,或者可以完全除去一些字符.您也可以用它来除去重复 ...
- [LeetCode] Climbing Stairs 斐波那契数列
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- sgu 275 To xor or not to xor 线性基 最大异或和
题目链接 题意 给定\(n\)个数,取其中的一个子集,使得异或和最大,求该最大的异或和. 思路 先求得线性基. 则求原\(n\)个数的所有子集的最大异或和便可转化成求其线性基的子集的最大异或和. 因为 ...
- Codevs 1643 & 3027 线段覆盖
1643 题意 给定若干条线段,问最多可以安排多少条使得没有重合. 思路 贪心,同安排schedule,按结束时间早的排序. Code #include <bits/stdc++.h> # ...
- android中与Adapter相关的控件----ListView
ListView讲解: 一.ListView这个控件是一个使用非常广泛的控件,值得深入的学习和研究.基本使用已经在Adapter中使用过了 二.常用的属性和方法 footerDividersEnabl ...