最短Hamilton路径-状压dp解法
最短Hamilton路径
时间限制: 2 Sec 内存限制: 128 MB
题目描述
输入
接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j])。
对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。
输出
样例输入
4
0 2 1 3
2 0 2 1
1 2 0 1
3 1 1 0
样例输出
4
提示
从0到3的Hamilton路径有两条,0-1-2-3和0-2-1-3。前者的长度为2+2+1=5,后者的长度为1+2+1=4
状态压缩dp,把到每一点后已经过的点当成一种状态存起来,用二进制的每位的1或者0表示这一点有没有被经过
#include<bits/stdc++.h>
using namespace std;
int dp[<<][]; int main()
{
int n,Map[][];
scanf("%d",&n);
for(int i=; i<n; i++)
for(int j=; j<n; j++)
scanf("%d",&Map[i][j]); if(n==)
{
printf("%d",Map[][]);
return ;
} int sum=(<<(n-))-; for(int i=;i<=sum;i++)
for(int j=;j<=;j++)dp[i][j]=INT_MAX; for(int i=; i<=sum; i++)
{
int now=; for(int j=; j<=n-; j++)
{
now=<<j; if(now&i)
{
if(now==i)dp[i][j+]=Map[][j+];
else
{
for(int k=;k<=n-;k++)
{
int a=<<k; if(k!=j&&(i&a))
dp[i][j+]=min(dp[i][j+],dp[i-now][k+]+Map[k+][j+]);
}
}
}
}
} int ans=INT_MAX;
for(int i=;i<=n-;i++)ans=min(ans,dp[sum][i]+Map[i][n-]);
printf("%d",ans); return ;
}
最短Hamilton路径-状压dp解法的更多相关文章
- 完全图的最短Hamilton路径——状压dp
题意:给出一张含有n(n<20)个点的完全图,求从0号节点到第n-1号节点的最短Hamilton路径.Hamilton路径是指不重不漏地经过每一个点的路径. 算法进阶上的一道状压例题,复杂度为O ...
- Acwing-91-最短Hamilton路径(状压DP)
链接: https://www.acwing.com/problem/content/93/ 题意: 给定一张 n 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hami ...
- 『最短Hamilton路径 状态压缩DP』
状压DP入门 最短Hamilton路径 Description 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamil ...
- P1433 吃奶酪(洛谷)状压dp解法
嗯?这题竟然是个绿题. 这个题真的不(很)难,我们只是不会计算2点之间的距离,他还给出了公式,这个就有点…… 我们直接套公式去求出需要的值,然后普通的状压dp就可以了. 是的状压dp. 这个题的数据加 ...
- CH0103最短Hamilton路径 & poj2288 Islands and Brigdes【状压DP】
虐狗宝典学习笔记: 取出整数\(n\)在二进制表示下的第\(k\)位 \((n >> ...
- 最短Hamilton路径(状压dp)
最短Hamilton路径实际上就是状压dp,而且这是一道作为一个初学状压dp的我应该必做的题目 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 ...
- 最短Hamilton路径【状压DP】
给定一张 nn 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入 ...
- 0103 最短Hamilton路径【状压DP】
0103 最短Hamilton路径 0x00「基本算法」例题 描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Ham ...
- AcWing 最短Hamilton距离 (状压DP)
题目描述 给定一张 n 个点的带权无向图,点从 0∼n−1 标号,求起点 0 到终点 n−1 的最短 Hamilton 路径. Hamilton 路径的定义是从 0 到 n−1 不重不漏地经过每个点恰 ...
随机推荐
- helm install
reference 前提:已安装k8s:v1.10.4 helm install on master(无需下载官方tar包) 链接:https://pan.baidu.com/s/1Ji3Ru1pTQ ...
- JDK安装及环境变量配置详解
一.下载(Jdk 1.8 ) 1.下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151 ...
- RabbitMQ 学习资料
https://www.rabbitmq.com/getstarted.html http://www.cnblogs.com/luxiaoxun/p/3918054.html http://back ...
- 53. Maximum Subarray@python
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- 【思维题 线段树】cf446C. DZY Loves Fibonacci Numbers
我这种maintain写法好zz.考试时获得了40pts的RE好成绩 In mathematical terms, the sequence Fn of Fibonacci numbers is de ...
- Ubuntu下删除mysql数据库
Ubuntu下删除mysql数据库 sudo apt-get autoremove --purge mysql-server-5.7 sudo apt-get remove mysql-server ...
- nginx作为正向代理,反向代理的一些应用
正向代理代理的对象是客户端 反向代理代理的对象是服务端 举例说下nginx作为正向代理作访问控制 server{ listen 80; server_name localhost jeson.gaos ...
- 这五本Python急速入门必读的书,送给正在学习Python的你!
书籍是人类进步的阶梯,这句话从古至今都是适用的.为什么会这么说呢?书籍,它记录了人们实践的经验,这些经验有助于我们快速的学习,对于编程学习来说也不例外,今天就给大家带来了以下的书籍干货,希望能够帮助到 ...
- 学习pwn的一些指导
使用ret2libc攻击方法绕过数据执行保护 http://blog.csdn.net/linyt/article/details/43643499 格式化字符串利用小结 http://www.cnb ...
- IAR调试时出现IAR one or more breakpoints could not be set and have been disabled的解决办法
问题:在IAR调试时,单步执行的时候绿色箭头一直指向汇编界面,不指向C语言界面,并且不能在C语言界面设置断点,以及在代码编辑界面,设置断点,点调试时总提示IAR one or more breakpo ...