序:

模拟赛考了一道 2-sat 问题。之前从来没听过……

考完才发现其实这个东东只要一个小小的 tarjan 求强连通分量就搞定了。

这个方法真是巧妙啊,拿来讲讲。

What is it? [・_・?]

这个算法是为了应对一些这样的条件:x1 与 x1 中至少有一个成立

算法:

既然是“2"-sat,那就要充分发挥 “two” 的优势,由于x1限制关系,有一些点我们选了后,有一些点就不能选了,那我们就只能选另一个点了满足 x2。

我们把 a 想它必须选的点 b 连有向边,这样就构成了一个图,判定的话,判断是否有两个不能同时存在的点在一个强连通分量中就好了!

这有一位大佬写的比我更好 OTZ

当然重点是讲模拟赛的题!

例题  Flags:

传送门

题目大意:数轴上有 n 个旗子,第 i 个可以插在坐标 xi 或者 yi,最大化两两旗子之间的最小距离。

题解:

我们可以二分答案,转化为一个 2-sat 问题。

二分最小距离 d,那么一个点 a 向左向右 d 的 b 点都不能选,那么选了 a 就必须选 b 的另一个位置,然后我们连边,最后判断是不是有一个点的两个位置是不是在一个强连通分量里,在则不能,否则可以。

这题还有一个点就是如果直接建边的话,就有 $n^2$ 条边,你会发现这题一个点的连边都是连续的,那就不妨线段树优化建图。具体思想戳这里

CODE:

 #include<iostream>
#include<cstdio>
#include<stack>
#include<algorithm>
#include<cstring>
using namespace std; int v[];
int n,x,y,tot=,h[];
int scc[],dfn[],low[],C,cnt;
bool vis[];
struct Edge{
int x,next;
}e[];
pair<int,int> a[];
stack<int> s; inline void add_edge(int x,int y){
e[++tot].x=y;
e[tot].next=h[x],h[x]=tot;
} void tarjan(int x){
dfn[x]=low[x]=++cnt;
s.push(x),vis[x]=true;
for(int i=h[x];~i;i=e[i].next){
if(!dfn[e[i].x]){
tarjan(e[i].x),low[x]=min(low[x],low[e[i].x]);
}else if(vis[e[i].x]){
low[x]=min(low[x],dfn[e[i].x]);
}
}
if(dfn[x]==low[x]){
C++;
int tmp;
for(;;){
tmp=s.top();
vis[tmp]=false,scc[tmp]=C;
s.pop();
if(tmp==x)break;
}
}
} void build(int o,int l,int r){
if(r-l==){
add_edge(o+n*,a[l].second^);
return;
}
add_edge(o+n*,(o<<)+n*);
add_edge(o+n*,(o<<|)+n*);
int mid=l+r>>;
build(o<<,l,mid),build(o<<|,mid,r);
} void link(int o,int l,int r,int x,int y,int a){
if(l>=x&&r<=y){
add_edge(a,o+n*);
return;
}
int mid=l+r>>;
if(x<mid)link(o<<,l,mid,x,y,a);
if(y>mid)link(o<<|,mid,r,x,y,a);
} inline pair<int,int> get(int x,int len){
int l=,r=x;
pair<int,int> ans;
while(l<r){
int mid=l+r>>;
if(a[x].first-a[mid].first<len)r=mid;
else l=mid+;
}
ans.first=l;
l=x,r=n*-;
while(l<r){
int mid=l+r+>>;
if(a[mid].first-a[x].first<len)l=mid;
else r=mid-;
}
ans.second=l;
return ans;
} inline bool check(int d){
memset(scc,,sizeof(scc));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(h,-,sizeof(h)),tot=;
build(,,n*);
for(int i=;i<n*;i++){
int id=a[i].second;
pair<int,int> x=get(i,d);
if(i<x.second)link(,,n*,i+,x.second+,id);
if(x.first<i)link(,,n*,x.first,i,id);
}
C=cnt=;
for(int i=;i<n*;i++)if(!dfn[i])tarjan(i);
for(int i=;i<n*;i++)
if(scc[a[i].second]==scc[a[i].second^])return false;
return true;
} int main(){
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%d%d",&x,&y);
a[*i+]=make_pair(x,*i+);
a[*i]=make_pair(y,*i);
}
sort(a,a+n*);
int l=,r=;
while(l<r){
int mid=l+r+>>;
if(check(mid))l=mid;
else r=mid-;
}
printf("%d",l);
}

2-sat 问题 【例题 Flags(2-sat+线段树优化建图)】的更多相关文章

  1. 【ARC069F】Flags 2-sat+线段树优化建图+二分

    Description ​ 数轴上有 n 个旗子,第 ii 个可以插在坐标 xi或者 yi,最大化两两旗子之间的最小距离. Input ​ 第一行一个整数 N. ​ 接下来 N 行每行两个整数 xi, ...

  2. BZOJ5017 [SNOI2017]炸弹 - 线段树优化建图+Tarjan

    Solution 一个点向一个区间内的所有点连边, 可以用线段树优化建图来优化 : 前置技能传送门 然后就得到一个有向图, 一个联通块内的炸弹可以互相引爆, 所以进行缩点变成$DAG$ 然后拓扑排序. ...

  3. 【BZOJ3681】Arietta 树链剖分+可持久化线段树优化建图+网络流

    [BZOJ3681]Arietta Description Arietta 的命运与她的妹妹不同,在她的妹妹已经走进学院的时候,她仍然留在山村中.但是她从未停止过和恋人 Velding 的书信往来.一 ...

  4. 【bzoj5017】[Snoi2017]炸弹 线段树优化建图+Tarjan+拓扑排序

    题目描述 在一条直线上有 N 个炸弹,每个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足:  Xi−Ri≤Xj≤Xi+Ri,那么,该炸弹也会被引爆.  现在 ...

  5. 【bzoj4699】树上的最短路(树剖+线段树优化建图)

    题意 给你一棵 $n$ 个点 $n-1$ 条边的树,每条边有一个通过时间.此外有 $m$ 个传送条件 $(x_1,y_1,x_2,y_2,c)$,表示从 $x_1$ 到 $x_2$ 的简单路径上的点可 ...

  6. 【BZOJ4276】[ONTAK2015]Bajtman i Okrągły Robin 线段树优化建图+费用流

    [BZOJ4276][ONTAK2015]Bajtman i Okrągły Robin Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2 ...

  7. 【bzoj3073】[Pa2011]Journeys 线段树优化建图+堆优化Dijkstra

    题目描述 Seter建造了一个很大的星球,他准备建造N个国家和无数双向道路.N个国家很快建造好了,用1..N编号,但是他发现道路实在太多了,他要一条条建简直是不可能的!于是他以如下方式建造道路:(a, ...

  8. 【bzoj4383】[POI2015]Pustynia 线段树优化建图+差分约束系统+拓扑排序

    题目描述 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r,k以及接下来k个正整数,表示a[l],a[l+1],...,a[r- ...

  9. BZOJ_4276_[ONTAK2015]Bajtman i Okrągły Robin_线段树优化建图+最大费用最大流

    BZOJ_4276_[ONTAK2015]Bajtman i Okrągły Robin_线段树优化建图+最大费用最大流 Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1 ...

随机推荐

  1. Codeforces Round 513 (Div.1+Div.2)

    比赛传送门 10月4号的比赛,因为各种原因(主要是懒),今天才写总结-- Div1+Div2,只做出两个题+迟到\(20min\),日常掉\(rating\)-- \(\rm{A.Phone\;Num ...

  2. VueX源码分析(1)

    VueX源码分析(1) 文件架构如下 /module /plugins helpers.js index.esm.js index.js store.js util.js util.js 先从最简单的 ...

  3. cnpm 莫名奇妙bug 莫名奇妙的痛

    cnpm 莫名奇妙bug 莫名奇妙的痛 最近想搭建react@v16 和 react-router@v4,搭建过程打算用vue脚手架webpack模板那套配置方法(webpack3). 由于我之前安装 ...

  4. logback写日志

    https://blog.csdn.net/u010128608/article/details/76618263 https://blog.csdn.net/zhuyucheng123/articl ...

  5. linux常用命令(配置查看,定时任务)

    1.查看所有待挂载设备信息 fdisk -l # fdisk -l Disk /dev/sda: bytes heads, sectors/track, cylinders, total sector ...

  6. 201621123080《Java程序设计》第9周学习总结

    作业09-集合与泛型 1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 2. 书面作业 本次作业题集集合 1. List中指定元素的删除(题集题目) 1.1 实 ...

  7. Yii2.0 的安装学习

    视频学习地址: 后盾网视频: http://www.houdunren.com/houdunren18_lesson_76?vid=7350 与<Yii框架>不得不说的故事—基础篇 htt ...

  8. GoF23种设计模式之行为型模式之访问者模式

    概述 表示一个作用于某对象结构中的各元素的操作. 它使你可以在不改变各元素的类的前提下定义作用于这些元素的新操作. 适用性 1.一个对象结构包含很多类对象,它们有不同的接口,而你想对这些对象实施一些依 ...

  9. LeetCode(122) Best Time to Buy and Sell Stock II

    题目 Say you have an array for which the ith element is the price of a given stock on day i. Design an ...

  10. Java构造器(construtor)与垃圾收集器(GB)

    在Java中,程序员会在乎内存中的两块空间. 堆(heap)和栈(stack). 当java虚拟机启动时, 它会从底层的操作系统取得一块内存, 并且以此块内存来执行java程序. 在Java中, 实例 ...