题意:小C上周末和他可爱的同学小A一起去X湖玩。
X湖景区一共有n个景点,这些景点由n-1条观光道连接着,从每个景点开始都可以通过观光道直接或间接地走到其他所有的景点。小C带着小A从1号景点开始游玩。游览完第一个景点后,先由小C决定下一个游览的景点,他们一起走去那个景点玩。接下来,他们轮流决定他们下一步去哪个景点玩。他们不会选择已经走过的景点,因为重复游览一个景点是无趣的。当他们无法选择下一个景点时,他们就结束旅程。
小C是好动的男孩纸,所以他希望游览的过程尽量长,也就是走过观光道的长度和最大。而小A是文静的女孩纸,她希望游览的过程尽量短。小A和小C都极度聪明,且他们的目光都足够长远,他们做出的决策都是对自己最优的。由于小C在旅游前就仔细研究了X湖景区的地图,他可以在旅行开始前就用自己惊人的数学能力推算出他和小A旅行的路径长度。
小C的梦境是美好的。在他的梦里,他和小A又进行了n-1次旅行,第i次旅行从i+1号点开始,每次也是小C先决定下一个景点,然后小A,然后小C……直到旅行结束。现在小C希望你对于所有n次旅行,求出他和小A旅行的路径长度。

对于100%的数据,N ≤ 300000, c[i] ≤ 1e9

对于60%的数据,N ≤ 3000

思路:对于60分,容易想到枚举根,做N次O(N)的DP,时间复杂度O(n)

对于100分,模拟样例后发现两个直接相连的节点U与V,其DP值只有U与V点时不同,所以考虑当根从U到V时O(1)转移求出新的DP[u]与DP[v]

注意此处不需要保证整个DP数组值都为正确,只要U的值与V的值正确即可

可以想到当U的最值由V转移时,两者交换后V必须从U的另一支转移,所以记录次值

调参大法好

 var f:array[..,..]of int64;
ans:array[..]of int64;
head,vet,next,len,flag:array[..]of longint;
n,tot,i,x,y,z:longint;
oo:int64; procedure add(a,b,c:longint);
begin
inc(tot);
next[tot]:=head[a];
vet[tot]:=b;
len[tot]:=c;
head[a]:=tot;
end; procedure dfs(u:longint);
var e,v,de:longint;
t:int64;
begin
flag[u]:=;
e:=head[u];
de:=;
while e<> do
begin
v:=vet[e];
if flag[v]= then
begin
dfs(v); inc(de);
t:=f[v,]+len[e];
if (t>f[u,])or(f[u,]=) then
begin
f[u,]:=f[u,]; f[u,]:=t;
end
else if (t<=f[u,])and(t>f[u,])or(f[u,]=) then f[u,]:=t; t:=f[v,]+len[e];
if (t<f[u,])or(f[u,]=) then
begin
f[u,]:=f[u,]; f[u,]:=t;
end
else if (t>=f[u,])and(t<f[u,])or(f[u,]=) then f[u,]:=t; end;
e:=next[e];
end; end; procedure change(u:longint);
var e,v:longint;
t,t1,t2,t3,t4:int64;
begin
e:=head[u]; flag[u]:=;
t1:=f[u,]; t2:=f[u,]; t3:=f[u,]; t4:=f[u,]; ans[u]:=f[u,];
while e<> do
begin
v:=vet[e]; if flag[v]= then begin e:=next[e]; continue; end;
if f[v,]+len[e]=t1 then t:=f[u,]+len[e]
else t:=f[u,]+len[e];
if (t<f[v,])or(f[v,]=) then
begin
f[v,]:=f[v,]; f[v,]:=t;
end
else if (t<f[v,])or(f[v,]=) then f[v,]:=t; if f[v,]+len[e]=t3 then begin t:=f[u,]+len[e];end
else t:=f[u,]+len[e]; if (t>f[v,])or(f[v,]=) then
begin
f[v,]:=f[v,]; f[v,]:=t;
end
else if (t>f[v,])or(f[v,]=) then f[v,]:=t;
change(v);
e:=next[e];
end; end; begin
assign(input,'travel.in'); reset(input);
assign(output,'travel.out'); rewrite(output);
oo:=<<;
readln(n); //f[u,]zuida f[u,]cida
//f[u,]zuixiao f[u,]cixiao
for i:= to n- do
begin
readln(x,y,z);
add(x,y,z);
add(y,x,z);
end; dfs();
fillchar(flag,sizeof(flag),);
change();
for i:= to n do writeln(ans[i]);
close(input);
close(output);
end.

【NOIP2016练习】T2 旅行(树形DP,换根)的更多相关文章

  1. bzoj 3743 [Coci2015]Kamp——树形dp+换根

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 树形dp+换根. “从根出发又回到根” 减去 “mx ” . 注意dfsx里真的要改那 ...

  2. 树形dp换根,求切断任意边形成的两个子树的直径——hdu6686

    换根dp就是先任取一点为根,预处理出一些信息,然后在第二次dfs过程中进行状态的转移处理 本题难点在于任意割断一条边,求出剩下两棵子树的直径: 设割断的边为(u,v),设down[v]为以v为根的子树 ...

  3. poj3585 Accumulation Degree(树形dp,换根)

    题意: 给你一棵n个顶点的树,有n-1条边,每一条边有一个容量z,表示x点到y点最多能通过z容量的水. 你可以任意选择一个点,然后从这个点倒水,然后水会经过一些边流到叶节点从而流出.问你最多你能倒多少 ...

  4. poj3585 Accumulation Degree[树形DP换根]

    思路其实非常简单,借用一下最大流求法即可...默认以1为根时,$f[x]$表示以$x$为根的子树最大流.转移的话分两种情况,一种由叶子转移,一种由正常孩子转移,判断一下即可.换根的时候由頂向下递推转移 ...

  5. [题解](树形dp/换根)小x游世界树

    2. 小x游世界树 (yggdrasi.pas/c/cpp) [问题描述] 小x得到了一个(不可靠的)小道消息,传说中的神岛阿瓦隆在格陵兰海的某处,据说那里埋藏着亚瑟王的宝藏,这引起了小x的好奇,但当 ...

  6. Acwing-287-积蓄程度(树上DP, 换根)

    链接: https://www.acwing.com/problem/content/289/ 题意: 有一个树形的水系,由 N-1 条河道和 N 个交叉点组成. 我们可以把交叉点看作树中的节点,编号 ...

  7. 2019ICPC沈阳网络赛-D-Fish eating fruit(树上DP, 换根, 点分治)

    链接: https://nanti.jisuanke.com/t/41403 题意: State Z is a underwater kingdom of the Atlantic Ocean. Th ...

  8. bzoj 1131 [POI2008]Sta 树形dp 转移根模板题

    [POI2008]Sta Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1889  Solved: 729[Submit][Status][Discu ...

  9. cf219d 基础换根法

    /*树形dp换根法*/ #include<bits/stdc++.h> using namespace std; #define maxn 200005 ]; int root,n,s,t ...

  10. Codeforces Round #527 (Div. 3) F. Tree with Maximum Cost 【DFS换根 || 树形dp】

    传送门:http://codeforces.com/contest/1092/problem/F F. Tree with Maximum Cost time limit per test 2 sec ...

随机推荐

  1. 汉明码(Hamming Code)原理及实现

    汉明码实现原理 汉明码(Hamming Code)是广泛用于内存和磁盘纠错的编码.汉明码不仅可以用来检测转移数据时发生的错误,还可以用来修正错误.(要注意的是,汉明码只能发现和修正一位错误,对于两位或 ...

  2. iOS 骰子战争 Dice Wars

    占坑 这个游戏之前在网页端玩过,App Store 上没有搜到特别好的,想自己做个类似的iOS APP 游戏 目测实现难度适中,可玩性较高

  3. rem和em的区别

    原文链接:http://caibaojian.com/rem-vs-em.html rem 单位如何转换为像素值 当使用 rem 单位,他们转化为像素大小取决于页根元素的字体大小,即 html 元素的 ...

  4. PHP RBAC权限控制,基于CI框架(版本3.1.9)

    2018年11月7日更新:目前功能已做到事件级别权限控制,如:后台用户的添加操作.删除操作和保存操作等具体到事件级的操作方法有权限则展示相应的操作菜单,没权限则隐藏相应菜单或提示无权限到目前算是真正做 ...

  5. mysql数据库使用mybatis 插入数据时返回主键

    为了体现题目,特指的是mysql,先贴上代码: <insert id="saveBizProdOrderDetail" useGeneratedKeys="true ...

  6. 1、python-初探

    语言包括编译型语言和解释型语言编译型:全部翻译,再执行:c.c++解释型:边执行边翻译:python.php.java.c#.perl.ruby.javascript 一.系统位数32位系统内存的最大 ...

  7. OpenCV中的图像形态学转换

    两个基本的形态学操作是腐蚀和膨胀.他们的变化构成了开运算,闭运算,梯度等.下面以这张图为例 1.腐蚀 这个操作会把前景物体的边界腐蚀掉. import cv2 import numpy as np i ...

  8. multiprocessing join与lock区别

    加锁 join方法 join方法会造成阻塞,在上一个进程完成之前不会运行join()后面的代码 lock  仍会执行之后的代码,遇到创建进程,会发向操作系统发出指令,但不会执行,等到上锁的进程结束之后 ...

  9. fhqtreap - Luogu 2464 [SDOI2008]郁闷的小J

    [SDOI2008]郁闷的小JJ 题目描述 小J是国家图书馆的一位图书管理员,他的工作是管理一个巨大的书架.虽然他很能吃苦耐劳,但是由于这个书架十分巨大,所以他的工作效率总是很低,以致他面临着被解雇的 ...

  10. Oracle数据库的日常使用命令

    1.     启动和关闭数据库 sqlplus /nolog; SQL >conn / as sysdba;(上面的两条命令相当于sqlplus ‘/as sysdba’) SQL >st ...