玲珑杯 Round #5 Problem E Tetration (枚举 + 欧拉公式)
题目链接 Tetration
题意 给定一个排列 现在可以任意调整这个排列的顺序
求$a_{1}^{a_{2}^{a_{3}^{...^{a_{n}}}}}$对$p$取模的最小值
直接枚举$a$的每一个排列,然后计算取最小值即可。
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define MP make_pair
#define fi first
#define se second typedef long long LL; const int N = 10; int n;
int T;
int f[N];
LL a[N], c[N];
LL m;
LL ans;
map <LL, LL> mp; LL phi(LL n){
if (mp.count(n)) return mp[n];
LL ans = n, z = n;
for (LL i = 2; i * i <= n; ++i){
if (n % i == 0){
ans -= ans / i;
while (n % i == 0) n /= i;
}
} if (n > 1) ans -= ans / n;
return mp[z] = ans;
} LL Pow(LL a, LL b, LL mod){
LL ret = 1;
LL fl = a >= mod;
for (; b; b >>= 1){
if (b & 1){
ret *= a;
if (ret >= mod) fl = 1, ret %= mod;
} a *= a;
if (a >= mod) a %= mod, fl = 1;
} return ret + fl * mod;
} LL solve(int l, int r, LL mod){
if (l == r) return c[l];
if (mod == 1) return 1;
return Pow(c[l], solve(l + 1, r, phi(mod)), mod);
} int main(){ scanf("%d", &T);
while (T--){
scanf("%d%lld", &n, &m);
ans = 1e18;
rep(i, 1, n) scanf("%lld", a + i);
rep(i, 1, n) f[i] = i;
do{
rep(i, 1, n) c[i] = a[f[i]];
ans = min(ans, solve(1, n, m) % m);
}
while (next_permutation(f + 1, f + n + 1));
printf("%lld\n", ans);
} return 0;
}
玲珑杯 Round #5 Problem E Tetration (枚举 + 欧拉公式)的更多相关文章
- Google Code Jam 2010 Round 1C Problem A. Rope Intranet
Google Code Jam 2010 Round 1C Problem A. Rope Intranet https://code.google.com/codejam/contest/61910 ...
- 玲珑杯 Round 19 A simple math problem
Time Limit:2s Memory Limit:128MByte Submissions:1599Solved:270 DESCRIPTION You have a sequence anan, ...
- dp - Google Code jam Qualification Round 2015 --- Problem B. Infinite House of Pancakes
Problem B. Infinite House of Pancakes Problem's Link: https://code.google.com/codejam/contest/6224 ...
- codeforces Round 286# problem A. Mr. Kitayuta's Gift
Mr. Kitayuta has kindly given you a string s consisting of lowercase English letters. You are asked ...
- UVALive 7457 Discrete Logarithm Problem (暴力枚举)
Discrete Logarithm Problem 题目链接: http://acm.hust.edu.cn/vjudge/contest/127401#problem/D Description ...
- Educational Codeforces Round 21 Problem E(Codeforces 808E) - 动态规划 - 贪心
After several latest reforms many tourists are planning to visit Berland, and Berland people underst ...
- HDU 3699 A hard Aoshu Problem(暴力枚举)(2010 Asia Fuzhou Regional Contest)
Description Math Olympiad is called “Aoshu” in China. Aoshu is very popular in elementary schools. N ...
- 【玲珑杯 round#18 A】计算几何你瞎暴力
[Link]:http://www.ifrog.cc/acm/problem/1143?contest=1020&no=0 [Description] [Solution] 因为每个点的(xi ...
- Google Code jam Qualification Round 2015 --- Problem A. Standing Ovation
Problem A. Standing Ovation Problem's Link: https://code.google.com/codejam/contest/6224486/dashbo ...
随机推荐
- Birthday Paradox
Birthday Paradox Sometimes some mathematical results are hard to believe. One of the common problems ...
- 1、python的基础
一.python组成 python程序的内容主要由变量.数据.关键字.操作符组成. 二.变量 在python中,变量指的是其指向的数据是可变的. 首先我们要了解一下python的内存管理.数据创建后就 ...
- 03012_会话技术Cookie&Session
1.会话技术简介 (1)存储客户端的技术 网站的购物系统,用户将购买的商品信息存储到哪里?因为Http协议是无状态的,也就是说每个客户访问服务器端资源时,服务器并不知道该客户端是谁,所以需要会话技术识 ...
- Django补充知识点——用户管理
内容概要 1.Form表单2.Ajax3.布局,Django母板4.序列化5.Ajax相关6.分页7.XSS攻击8.CSRF9.CBV.FBV 10.类中用装饰器的两种方法 11.上传文件 12.数据 ...
- ajax提交表单,支持文件上传
当我们提交表单但是又不想要刷新页面的时候就可以考虑使用ajax来实现提交功能,但是这有个局限就是当有文件上传的时候是行不通的,下面借助于jquery.form可以很方便满足我们的需求. 1.表单写 ...
- AD管理中心
(一).安装 Active Directory 管理中心 引用位置: http://technet.microsoft.com/zh-cn/library/dd560652(WS.10).aspx ( ...
- 62、在app遇到全局异常时避免直接退出,如何让app接管异常处理?
1.创建一个类为CrashHandler import android.content.Context; import android.os.Looper; import android.util.L ...
- Python+Selenium中级篇之-封装一个自己的类-浏览器引擎类
前一篇文章我们知道了,如何去封装几个简单的Selenium方法到我们自定义的类,这次我们编写一个类,叫浏览器引擎类,通过更改一个字符串的值,利用if语句去判断和控制启动那个浏览器.这里我们暂时,支持三 ...
- HTML 长文本换行
word-break 属性指定单词在到达行尾时应如何中断. p.a { word-break: break-all; } word-break: normal|break-all|keep-all|b ...
- Leetcode 632.最小区间
最小区间 你有 k 个升序排列的整数数组.找到一个最小区间,使得 k 个列表中的每个列表至少有一个数包含在其中. 我们定义如果 b-a < d-c 或者在 b-a == d-c 时 a < ...