题目:

2044年,Picks建成了人类第一台基于量子理论的银河系信息传递机。Picks游遍了宇宙,雇用了n个外星人来帮他作为信息传递机的中转站。我们将外星人依次编号为1 到n,其中i 号外星人有ai 根手指。外星人都是很低级的,于是Picks花费了很大的精力,才教会他们学会扳手指数数。Picks现在准备传递x 个脉冲信号给VFleaKing,于是他把信号发给1号外星人,然后1号外星人把信号发送给2号外星人,2号外星人把信号发送给3号外星人,依次类推,最后n号外星人把信号发给VFleaKing。但是事情没有Picks想象的那么顺利,由于外星人手指个数有限,所以如果i 号外星人收到了t 个脉冲信号,他会错误的以为发送过来的是tmodai 个脉冲信号,导致只发送了tmodai个脉冲信号出去。Picks希望他发送出去的脉冲信号数量x 与VFleaKing收到的脉冲信号数量y 的差的绝对值尽量小。于是他决定通过重新排列这些外星人的顺序来达到这一目的。请你求出与x 之差最小的y。除此之外,请求出有多少种排列外星人的方式能达到最优解,你只需要输出方案数对998244353(7×17×223+1,一个质数)取模后的结果。

分析:

先把元素从大到小排序,对于新出现的最小值点ai就是关键点。设dp[i][j]为对前i个数取模后余数为j的方案数。当ai为关键点时状态转移方程为:dp[i][j%a[i]]+=dp[i-1][j],当ai为非关键点时状态转移方程为dp[i][j]+=(n-1)*dp[i-1][j]

#include <iostream>
#include <string>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#define range(i,a,b) for(int i=a;i<=b;++i)
#define LL long long
#define rerange(i,a,b) for(int i=a;i>=b;--i)
#define fill(arr,tmp) memset(arr,tmp,sizeof(arr))
using namespace std;
int n,d,a[],dp[][];
const int DEV=;
bool cmp(int a,int b){
return a>b;
}
void init(){
cin>>n>>d;
range(i,,n)cin>>a[i];
sort(a+,a++n,cmp);
dp[][d]=;
}
void solve(){
range(i,,n){
range(j,,d)dp[i][j]=((LL)dp[i][j]+(LL)dp[i-][j]*(n-i)%DEV)%DEV;
range(j,,d)dp[i][j%a[i]]=((LL)dp[i][j%a[i]]+dp[i-][j])%DEV;
}
rerange(i,a[n]-,)if(dp[n][i]){
cout<<i<<endl<<dp[n][i]<<endl;
break;
}
}
int main() {
init();
solve();
return ;
}

UOJ 外星人的更多相关文章

  1. 【UOJ#22】【UR#1】外星人

    2044年,Picks建成了人类第一台基于量子理论的银河系信息传递机. Picks游遍了宇宙,雇用了 n 个外星人来帮他作为信息传递机的中转站.我们将外星人依次编号为 1 到 n,其中 i 号外星人有 ...

  2. Uoj 22 外星人

    Uoj 22 外星人 注意到一个数只有 \(\%\) 了小于等于自己的数时,才可能有变化,否则可以随意安排,不会对最后最优解造成影响. 用 \(f[x]\) 表示给一个数 \(x\) ,仅用 \(a[ ...

  3. 【UOJ#22】【UR #1】外星人(动态规划)

    [UOJ#22][UR #1]外星人(动态规划) 题面 UOJ 题解 一道简单题? 不难发现只有按照从大往小排序的顺序选择的才有意义,否则先选择一个小数再去模一个大数是没有意义的. 设\(f[i][j ...

  4. UOJ #22 UR #1 外星人

    LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考 ...

  5. 【uoj#22】[UR #1]外星人 组合数学+dp

    题目描述 给你一个长度为 $n$ 的序列 $\{a_i\}$ 和一个数 $x$ ,对于任意一个 $1\sim n$ 的排列 $\{p_i\}$ ,从 $1$ 到 $n$ 依次执行 $x=x\ \tex ...

  6. UOJ#22. 【UR #1】外星人

    传送门 分析 我们发现一个很神的性质,就是对于一个数如果放在它之前的数小于它那它一定对答案没有贡献 于是我们用dp[i][j]表示从大往小考虑了前i个数,当前答案是j的方案数 我们知道它由两种情况转移 ...

  7. UOJ Round #1 [数论 | DP 排列]

    UOJ Round #1 难度很良心啊! 做出了前两题,第三题看到仙人掌就吓哭了. [UR #1]缩进优化 就是求 \[ \sum_{i=1}^n a_i - (x-1)\sum_{i=1}^n\lf ...

  8. 【UOJ Round #1】

    枚举/DP+排列组合 缩进优化 QAQ我当时一直在想:$min\{ \sum_{i=1}^n (\lfloor\frac{a[i]}{x}\rfloor + a[i] \ mod\ x) \}$ 然而 ...

  9. 虚拟机上装uoj

    前期准备: x64 ubuntu 镜像.vmware.ss账号 注意一定要有64位镜像! ss不是必须的,不过没有的话就等着下载一晚上吧... 首先先装好ubuntu,我装的是ubuntu-16.04 ...

随机推荐

  1. oracle 基本函数

    1)字符串函数---length()函数 用于返回字符串长度  select t.name,length(t.name) from tb_person t 2)向左补全字符串---LPAD()函数 L ...

  2. windows控制台主题美化工具-colortool

    最近在win10上装了 wsl 系统,发现界面主题太挫,文件夹颜色很不清晰 . 特此在网上搜索了一下,发现了 colortool 这个工具 这是微软官方提供的用于控制台配色的程序 发布版本地址:htt ...

  3. R语言分析朝阳医院数据

    R语言分析朝阳医院数据 本次实践通过分析朝阳医院2016年销售数据,得出“月均消费次数”.“月均消费金额”.“客单价”.“消费趋势”等结果,并据此作出可视化图形. 一.读取数据: library(op ...

  4. linux环境搭建系列之Apache MQ安装

    1.创建文件夹 #mkdir MQ 2.解压 #tar -vxf apache-activemq-5.14.3-bin.tar.gz 3.进入解压后的目录 # cd apache-activemq-5 ...

  5. Kernel Space与User Space(转)

    对于刚刚接触Linux的菜鸟来说,可能会不理解大家常说的Kernel Space和User Space是什么意思,我简单搜了一下,发现阮一峰写过一个比较简洁的介绍,贴下来给大家: 学习 Linux 时 ...

  6. 谈谈Python中元类Metaclass(二):ORM实践

    什么是ORM? ORM的英文全称是“Object Relational Mapping”,即对象-关系映射,从字面上直接理解,就是把“关系”给“对象”化. 对应到数据库,我们知道关系数据库(例如Mys ...

  7. How to modify a compiled Android application (.apk file)

    Today I’d like to share with you my findings about how an existing .apk file can be modified. An .ap ...

  8. [SDOI2010][bzoj1927] 星际竞速 [最小路径覆盖+费用流]

    题面 传送门 思路 仔细观察题目要求的东西,发现就是求一个最小路径覆盖,只不过可以跳跃(就是那个鬼畜的超级跳跃) 那么就直接上最小路径覆盖模版 对每个点,拆成两个点$X_i$和$Y_i$,建立超级源超 ...

  9. BZOJ3571 [Hnoi2014]画框 【分治 + KM算法】

    题目链接 BZOJ3571 题解 如果知道最小乘积生成树,那么这种双权值乘积最小就是裸题了 将两权值和作为坐标,转化为二维坐标系下凸包上的点,然后不断划分分治就好了 这里求的是最小匹配值,每次找点套一 ...

  10. script error总结

    移动端的页面在控制台报出一个script error,通常的原因有一下几点: 1. 脚本引入错误 可能是脚本的地址不对,协议不对(http或https问题),本地host文件绑定的地址不对 2. 方法 ...