【BZOJ3782】上学路线

Description

小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M)。小C家住在西南角,学校在东北角。现在有T个路口进行施工,小C不能通过这些路口。小C喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走;而小C又喜欢走不同的路径,因此他问你按照他走最短路径的规则,他可以选择的不同的上学路线有多少条。由于答案可能很大,所以小C只需要让你求出路径数mod P的值。

Input

第一行,四个整数N、M、T、P。
接下来的T行,每行两个整数,表示施工的路口的坐标。

Output

一行,一个整数,路径数mod P的值。

Sample Input

3 4 3 1019663265
3 0
1 1
2 2

Sample Output

8

HINT

1<=N,M<=10^10
0<=T<=200
p=1000003或p=1019663265

题解:从(0,0)走到(n,m)的总方案数=C(n+m,n)。

依旧考虑容斥,先将点排序,用f[i]表示从(0,0)走到(x[i],y[i]),途中不经过其它障碍的方案数,那么如果j在i的左下方,则f[i]-=f[j]*(从j走到i的方案数)。

然而1019663265不是质数?分解质因数的1019663265=3*5*6793*10007,分别求解,再用中国剩余定理合并即可。

EXGCD还能写错~

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
ll mod,ans;
ll n,m,P;
int T;
ll f[210],jc[1000010],jcc[1000010],ine[1000010];
struct node
{
ll x,y;
}p[210];
bool cmp(node a,node b)
{
return (a.x==b.x)?(a.y<b.y):(a.x<b.x);
}
ll C(ll a,ll b)
{
if(a<b) return 0;
if(!b) return 1;
if(a<mod&&b<mod) return jc[a]*jcc[a-b]%mod*jcc[b]%mod;
return C(a%mod,b%mod)*C(a/mod,b/mod)%mod;
}
ll calc()
{
memset(f,0,sizeof(f));
int i,j;
jc[0]=jcc[0]=1;
ine[1]=1;
for(i=2;i<mod;i++) ine[i]=(mod-(mod/i)*ine[mod%i]%mod)%mod;
for(i=1;i<mod;i++) jc[i]=jc[i-1]*i%mod,jcc[i]=jcc[i-1]*ine[i]%mod;
for(i=1;i<=T;i++)
{
f[i]=C(p[i].x+p[i].y,p[i].x);
for(j=1;j<i;j++)
if(p[i].x>=p[j].x&&p[i].y>=p[j].y) f[i]=(f[i]-f[j]*C(p[i].x-p[j].x+p[i].y-p[j].y,p[i].x-p[j].x)%mod+mod)%mod;
}
return f[T];
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b)
{
x=1,y=0;
return ;
}
exgcd(b,a%b,x,y);
ll tmp=x;
x=y,y=tmp-a/b*x;
}
ll work(ll a,ll c,ll b)
{
ll x,y;
exgcd(a,b,x,y),x=(x+b)%b;
return x*a%P*c%P;
}
int main()
{
scanf("%lld%lld%d%lld",&n,&m,&T,&P);
int i;
for(i=1;i<=T;i++) scanf("%lld%lld",&p[i].x,&p[i].y);
p[++T].x=n,p[T].y=m;
sort(p+1,p+T+1,cmp);
if(P==1000003)
{
mod=P,printf("%lld",calc());
return 0;
}
ll a1,a2,a3,a4;
mod=3,a1=calc();
mod=5,a2=calc();
mod=6793,a3=calc();
mod=10007,a4=calc();
ans=(ans+work(P/3,a1,3))%P;
ans=(ans+work(P/5,a2,5))%P;
ans=(ans+work(P/6793,a3,6793))%P;
ans=(ans+work(P/10007,a4,10007))%P;
printf("%lld",(ans+P)%P);
return 0;
}//3 4 3 1000003 3 0 1 1 2 2

【BZOJ3782】上学路线 组合数+容斥+CRT的更多相关文章

  1. BZOJ3782 上学路线 【dp + Lucas + CRT】

    题目链接 BZOJ3782 题解 我们把终点也加入障碍点中,将点排序,令\(f[i]\)表示从\((0,0)\)出发,不经过其它障碍,直接到达\((x_i,y_i)\)的方案数 首先我们有个大致的方案 ...

  2. bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...

  3. bzoj3782上学路线

    题意:从n*m网格图的左下角走到右上角(n,m<=10^10),有t个坐标不能经过(t<=200),只能向上向右走,问有多少种不同的走法,对p取模, p只有两种取值,1000003(质数) ...

  4. Codeforces 100548F - Color (组合数+容斥)

    题目链接:http://codeforces.com/gym/100548/attachments 有n个物品 m种颜色,要求你只用k种颜色,且相邻物品的颜色不能相同,问你有多少种方案. 从m种颜色选 ...

  5. BZOJ5306 [HAOI2018]染色 【组合数 + 容斥 + NTT】

    题目 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只 ...

  6. 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥

    [BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...

  7. cf997C. Sky Full of Stars(组合数 容斥)

    题意 题目链接 \(n \times n\)的网格,用三种颜色染色,问最后有一行/一列全都为同一种颜色的方案数 Sol Orz fjzzq 最后答案是这个 \[3^{n^2} - (3^n - 3)^ ...

  8. BZOJ3782 上学路线

    设障碍个数为,\(obs\)则一般的容斥复杂度为\(O(2^{obs})\).但因为这个题是网格图,我们可以用DP解.设\(f[i]\)表示不经过任何障碍到达第\(i\)个障碍的方案数,转移时枚举可以 ...

  9. HDU - 5201 :The Monkey King (组合数 & 容斥)

    As everyone known, The Monkey King is Son Goku. He and his offspring live in Mountain of Flowers and ...

随机推荐

  1. 如何使用 OpenStack CLI

    本节首先讨论 image 删除操作,然后介绍 OpenStack CLI 的使用方法,最后讨如何 Troubleshoot. Web UI 删除 image admin 登录后,Project -&g ...

  2. 标准C程序设计七---64

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  3. Android系统默认输入法的修改为搜狗输入法

    1.  frameworks\base\packages\SettingsProvider\res\values\defaults.xml 文件中修改默认输入法为搜狗输入法 <stringnam ...

  4. PHP实现15位身份证号转18位

    PHP实现15位身份证号转18位 参考博客: 作者:selfimpr626 来源:CSDN (根据身份证号计算年龄,15位身份证号码转18位) 原文:https://blog.csdn.net/wei ...

  5. gzip: stdin: unexpected end of file tar: 归档文件中异常的 EOF

    gzip: stdin: unexpected end of file tar: 归档文件中异常的 EOF 问题描述: 使用tar命令解压文件时,报错: gzip: stdin: unexpected ...

  6. Reactjs 的 PropTypes 使用方法

    propTypes 使用來規範元件Props的型別與必需狀態 var Test = React.createClass({ propTypes: { // required requiredFunc: ...

  7. MVC中使用ajax传递json数组

    解决方法 去www.json.org下载JSON2.js再调用JSON.stringify(JSONData)将JSON对象转化为JSON串. var people = [{ "UserNa ...

  8. HDU 6188最小费用流

    题目链接:http://hdu.hustoj.com/showproblem.php?pid=6118 掉坑里了,图很好建,Wa了一发,看了Disscuss里面有人提供了一组样例,画图发现:最小流模板 ...

  9. Java NIO中的Buffer类

    Buffer     缓冲,用于批量读写数据 Buffer是一个抽象类,基本数据类型都有实现类:XxxBuffer,比如ByteBuffer.CharBuffer.IntBuffer.DoubleBu ...

  10. SpringMVC整合fastdfs-client-java实现web文件上传下载

    原文:http://blog.csdn.net/wlwlwlwl015/article/details/52682153 本篇blog主要记录一下SpringMVC整合FastDFS的Java客户端实 ...