【bzoj4785】[Zjoi2017]树状数组 线段树套线段树
题目描述
漆黑的晚上,九条可怜躺在床上辗转反侧。难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历。那是一道基础的树状数组题。给出一个长度为 n 的数组 A,初始值都为 0,接下来进行 m 次操作,操作有两种:
输入
输出
样例输入
5 5
1 3 3
2 3 5
2 4 5
1 1 3
2 2 5
样例输出
1
0
665496236
题解
线段树套线段树
“如果你对树状数组比较熟悉,不难发现”本题中树状数组求的是后缀和。
那么当$l-1\neq 0$时(等于0时再单独讨论),求出的结果即为$\sum\limits_{i=l-1}^{r-1}A_i$,若与$\sum\limits_{i=l}^rA_i$相等,则要求$A_{l-1}=A_r$。所以只需要求出$A_{l-1}=A_r$的概率即可。
我们想,对于修改操作[l,r],如果已经确定了左端点t和右端点k,如何更新t与k(k>t)相等的概率呢?
肯定是要分情况讨论,当然其中只有当$t$或$k\in[l,r]$时才会产生影响。
1.当$t\in[1,l-1]$,$k\in[l,r]$时,不影响的概率为1-p
2.当$t\in[l,r]$,$k\in[l,r]$时,不影响的概率为1-2p
3.当$t\in[l,r]$,$k\in[r+1,n]$时,不影响的概率为1-p。
如果确定了t,我们显然可以使用线段树维护这三段区间。至于概率的问题,如果原来相等的概率为p,不影响的概率为q,那么新的相等的概率显然为$p·q+(1-p)(1-q)$。并且这个式子满足交换律和结合律,因此更新顺序是不需要考虑的(并且可以标记永久化)。
而由于t的存在情况也是连续的区间,所以我们还需要一颗线段树维护左端点t,所以需要线段树套线段树,即二维线段树。
具体实现:使用类似于标记永久化的思想,选择一段外层区间和内层区间,就把(外层区间对应的外层节点)对应的(内层区间对应的内层节点)更新。
至于查询[l,r],则查找(外层线段树中l-1对应的节点)对应的(内层线段树中r对应的节点)。因为永久化了标记,所以所有经过的节点对答案的贡献都需要记录到答案中(特别是外层线段树)。
以上就是$l\neq 1$的情况,至于l=1的情况,同理,要保证的是r的前缀和等于后缀和,采用同样的思路维护一下就好了,具体见代码中对外层线段树0节点的操作。
代码真心不长~
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
typedef long long ll;
const ll mod = 998244353;
int root[N << 2] , ls[N << 8] , rs[N << 8] , tot , n;
ll sum[N << 8];
ll cal(ll x , ll y)
{
return (x * y + (1 - x + mod) * (1 - y + mod)) % mod;
}
ll pow(ll x , ll y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
void update(int b , int e , ll v , int l , int r , int &x)
{
if(!x) x = ++tot , sum[x] = 1;
if(b <= l && r <= e)
{
sum[x] = cal(sum[x] , v);
return;
}
int mid = (l + r) >> 1;
if(b <= mid) update(b , e , v , l , mid , ls[x]);
if(e > mid) update(b , e , v , mid + 1 , r , rs[x]);
}
ll query(int p , int l , int r , int x)
{
if(!x) return 1;
if(l == r) return sum[x];
int mid = (l + r) >> 1;
if(p <= mid) return cal(sum[x] , query(p , l , mid , ls[x]));
else return cal(sum[x] , query(p , mid + 1 , r , rs[x]));
}
void modify(int p , int q , ll v , int b , int e , int l , int r , int x)
{
if(p <= l && r <= q)
{
update(b , e , v , 1 , n , root[x]);
return;
}
int mid = (l + r) >> 1;
if(p <= mid) modify(p , q , v , b , e , l , mid , x << 1);
if(q > mid) modify(p , q , v , b , e , mid + 1 , r , x << 1 | 1);
}
ll solve(int p , int q , int l , int r , int x)
{
if(l == r) return query(q , 1 , n , root[x]);
int mid = (l + r) >> 1;
if(p <= mid) return cal(query(q , 1 , n , root[x]) , solve(p , q , l , mid , x << 1));
else return cal(query(q , 1 , n , root[x]) , solve(p , q , mid + 1 , r , x << 1 | 1));
}
int main()
{
int m , opt , l , r;
ll p;
scanf("%d%d" , &n , &m);
while(m -- )
{
scanf("%d%d%d" , &opt , &l , &r);
if(opt == 1)
{
p = pow(r - l + 1 , mod - 2);
if(l > 1) modify(1 , l - 1 , (1 - p + mod) % mod , l , r , 0 , n , 1) , modify(0 , 0 , 0 , 1 , l - 1 , 0 , n , 1);
if(r < n) modify(l , r , (1 - p + mod) % mod , r + 1 , n , 0 , n , 1) , modify(0 , 0 , 0 , r + 1 , n , 0 , n , 1);
modify(l , r , (1 - (p << 1) % mod + mod) % mod , l , r , 0 , n , 1) , modify(0 , 0 , p , l , r , 0 , n , 1);
}
else printf("%lld\n" , solve(l - 1 , r , 0 , n , 1));
}
return 0;
}
【bzoj4785】[Zjoi2017]树状数组 线段树套线段树的更多相关文章
- 「ZJOI2017」树状数组(二维线段树)
「ZJOI2017」树状数组(二维线段树) 吉老师的题目真是难想... 代码中求的是 \(\sum_{i=l-1}^{r-1}a_i\),而实际求的是 \(\sum_{i=l}^{r}a_i\),所以 ...
- [BZOJ4785][ZJOI2017]树状数组(概率+二维线段树)
4785: [Zjoi2017]树状数组 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 297 Solved: 195[Submit][Status ...
- BZOJ4785 [Zjoi2017]树状数组 【二维线段树 + 标记永久化】
题目链接 BZOJ4785 题解 肝了一个下午QAQ没写过二维线段树还是很难受 首先题目中的树状数组实际维护的是后缀和,这一点凭分析或经验或手模观察可以得出 在\(\mod 2\)意义下,我们实际求出 ...
- P3688 [ZJOI2017] 树状数组 【二维线段树】
题目描述:这里有一个写挂的树状数组: 有两种共\(m\)个操作: 输入\(l,r\),在\([l,r]\)中随机选择一个整数\(x\)执行\(\text{Add}(x)\) 输入\(l,r\),询问执 ...
- 洛谷 P3688 - [ZJOI2017]树状数组(二维线段树+标记永久化)
题面传送门 首先学过树状数组的应该都知道,将树状数组方向写反等价于前缀和 \(\to\) 后缀和,因此题目中伪代码的区间求和实质上是 \(sum[l-1...n]-sum[r...n]=sum[l-1 ...
- LightOJ 1085(树状数组+离散化+DP,线段树)
All Possible Increasing Subsequences Time Limit:3000MS Memory Limit:65536KB 64bit IO Format: ...
- 敌兵布阵 HDU - 1166 (树状数组模板题,线段树模板题)
思路:就是树状数组的模板题,利用的就是单点更新和区间求和是树状数组的强项时间复杂度为m*log(n) 没想到自己以前把这道题当线段树的单点更新刷了. 树状数组: #include<iostrea ...
- 牛客网 暑期ACM多校训练营(第一场)J.Different Integers-区间两侧不同数字的个数-离线树状数组 or 可持久化线段树(主席树)
J.Different Integers 题意就是给你l,r,问你在区间两侧的[1,l]和[r,n]中,不同数的个数. 两种思路: 1.将数组长度扩大两倍,for(int i=n+1;i<=2* ...
- day 1 堆 hash 线段树 树状数组 冰茶姬 字典树 二叉查找树
来郑州的第二天,早上开始也没说什么就说了些注意安全,各种各样的注意安全... 冰茶姬: 原来再打食物链时看了一下冰茶姬,只注意了路径压缩,没想到还有什么按秩排序但确实快了不少... int find( ...
- HDU 1934 树状数组 也可以用线段树
http://acm.hdu.edu.cn/showproblem.php?pid=1394 或者是我自己挂的专题http://acm.hust.edu.cn/vjudge/contest/view. ...
随机推荐
- 洛谷 P2323 [HNOI2006]公路修建问题
题目描述 输入输出格式 输入格式: 在实际评测时,将只会有m-1行公路 输出格式: 输入输出样例 输入样例#1: 4 2 5 1 2 6 5 1 3 3 1 2 3 9 4 2 4 6 1 3 4 4 ...
- 通用的MIME类型:application/octet-stream
按照内容类型排列的 Mime 类型列表 类型/子类型 扩展名 application/envoy evy application/fractals fif application/futurespla ...
- ListView适配器Adapter介绍与优化
一.ListView与Adapter的关系 ListView是Android开发过程中较为常见的组件之一,它将数据以列表的形式展现出来.一般而言,一个ListView由以下三个元素组成: 1.View ...
- CPP-基础:c++读取ini文件
配置文件格式是[JP]K=2EC156673E 2F4240 5595F6 char str[50];GetPrivateProfileString("JP", "K&q ...
- DROP INDEX - 删除一个索引
SYNOPSIS DROP INDEX name [, ...] [ CASCADE | RESTRICT ] DESCRIPTION 描述 DROP INDEX 从数据库中删除一个现存的索引. 要执 ...
- JS事件类型--1
滚轮事件其实就是一个mousewheel事件,这个事件跟踪鼠标滚轮,类似Mac的触屏版. 一.客户区坐标位置 鼠标事件都是在浏览器视口的特定位置上发生的.这个位置信息保存在事件对象的clientX和c ...
- shell脚本,awk取中间列的方法。
解释 1.$(int(NF/2)+1) 中int(NF/2)等于3,然后加1,就得到中间的4了. 2.$(NF/2+0.5) 相当于得出的是整数.NF/2是3.5,再由3.5+0.5,所以就是4了,也 ...
- 基于matlab的蓝色车牌定位与识别---识别
接着昨天的工作,把最后一部分识别讲完. 关于字符识别这块,一种最省事的办法是匹配识别,将所得的字符和自己的标准字符库相减,计算所得结果,值最小的即为识别的结果.不过这种方法是在所得字符较为标准的情况, ...
- MHA
MHA 1. MHA简介 1.1 MHA工作原理总结为如下 1.2 MHA工具包介绍 2. 部署MHA 2.1 环境介绍 2.2 一主两从复制搭建 2.3 配置互信 2.4 下载MHA 2.5 安装M ...
- HTTP-常用配置
前言 这篇主要介绍HTTP服务程序环境 可能有一些介绍不到,博主能力有限,欢迎大神来纠正改进 HTTP协议从http/0.9到如今的http/2.0中间发生了很大的改变,现在主流的事http/1.1 ...