【bzoj4785】[Zjoi2017]树状数组 线段树套线段树
题目描述
漆黑的晚上,九条可怜躺在床上辗转反侧。难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历。那是一道基础的树状数组题。给出一个长度为 n 的数组 A,初始值都为 0,接下来进行 m 次操作,操作有两种:
输入
输出
样例输入
5 5
1 3 3
2 3 5
2 4 5
1 1 3
2 2 5
样例输出
1
0
665496236
题解
线段树套线段树
“如果你对树状数组比较熟悉,不难发现”本题中树状数组求的是后缀和。
那么当$l-1\neq 0$时(等于0时再单独讨论),求出的结果即为$\sum\limits_{i=l-1}^{r-1}A_i$,若与$\sum\limits_{i=l}^rA_i$相等,则要求$A_{l-1}=A_r$。所以只需要求出$A_{l-1}=A_r$的概率即可。
我们想,对于修改操作[l,r],如果已经确定了左端点t和右端点k,如何更新t与k(k>t)相等的概率呢?
肯定是要分情况讨论,当然其中只有当$t$或$k\in[l,r]$时才会产生影响。
1.当$t\in[1,l-1]$,$k\in[l,r]$时,不影响的概率为1-p
2.当$t\in[l,r]$,$k\in[l,r]$时,不影响的概率为1-2p
3.当$t\in[l,r]$,$k\in[r+1,n]$时,不影响的概率为1-p。
如果确定了t,我们显然可以使用线段树维护这三段区间。至于概率的问题,如果原来相等的概率为p,不影响的概率为q,那么新的相等的概率显然为$p·q+(1-p)(1-q)$。并且这个式子满足交换律和结合律,因此更新顺序是不需要考虑的(并且可以标记永久化)。
而由于t的存在情况也是连续的区间,所以我们还需要一颗线段树维护左端点t,所以需要线段树套线段树,即二维线段树。
具体实现:使用类似于标记永久化的思想,选择一段外层区间和内层区间,就把(外层区间对应的外层节点)对应的(内层区间对应的内层节点)更新。
至于查询[l,r],则查找(外层线段树中l-1对应的节点)对应的(内层线段树中r对应的节点)。因为永久化了标记,所以所有经过的节点对答案的贡献都需要记录到答案中(特别是外层线段树)。
以上就是$l\neq 1$的情况,至于l=1的情况,同理,要保证的是r的前缀和等于后缀和,采用同样的思路维护一下就好了,具体见代码中对外层线段树0节点的操作。
代码真心不长~
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
typedef long long ll;
const ll mod = 998244353;
int root[N << 2] , ls[N << 8] , rs[N << 8] , tot , n;
ll sum[N << 8];
ll cal(ll x , ll y)
{
return (x * y + (1 - x + mod) * (1 - y + mod)) % mod;
}
ll pow(ll x , ll y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
void update(int b , int e , ll v , int l , int r , int &x)
{
if(!x) x = ++tot , sum[x] = 1;
if(b <= l && r <= e)
{
sum[x] = cal(sum[x] , v);
return;
}
int mid = (l + r) >> 1;
if(b <= mid) update(b , e , v , l , mid , ls[x]);
if(e > mid) update(b , e , v , mid + 1 , r , rs[x]);
}
ll query(int p , int l , int r , int x)
{
if(!x) return 1;
if(l == r) return sum[x];
int mid = (l + r) >> 1;
if(p <= mid) return cal(sum[x] , query(p , l , mid , ls[x]));
else return cal(sum[x] , query(p , mid + 1 , r , rs[x]));
}
void modify(int p , int q , ll v , int b , int e , int l , int r , int x)
{
if(p <= l && r <= q)
{
update(b , e , v , 1 , n , root[x]);
return;
}
int mid = (l + r) >> 1;
if(p <= mid) modify(p , q , v , b , e , l , mid , x << 1);
if(q > mid) modify(p , q , v , b , e , mid + 1 , r , x << 1 | 1);
}
ll solve(int p , int q , int l , int r , int x)
{
if(l == r) return query(q , 1 , n , root[x]);
int mid = (l + r) >> 1;
if(p <= mid) return cal(query(q , 1 , n , root[x]) , solve(p , q , l , mid , x << 1));
else return cal(query(q , 1 , n , root[x]) , solve(p , q , mid + 1 , r , x << 1 | 1));
}
int main()
{
int m , opt , l , r;
ll p;
scanf("%d%d" , &n , &m);
while(m -- )
{
scanf("%d%d%d" , &opt , &l , &r);
if(opt == 1)
{
p = pow(r - l + 1 , mod - 2);
if(l > 1) modify(1 , l - 1 , (1 - p + mod) % mod , l , r , 0 , n , 1) , modify(0 , 0 , 0 , 1 , l - 1 , 0 , n , 1);
if(r < n) modify(l , r , (1 - p + mod) % mod , r + 1 , n , 0 , n , 1) , modify(0 , 0 , 0 , r + 1 , n , 0 , n , 1);
modify(l , r , (1 - (p << 1) % mod + mod) % mod , l , r , 0 , n , 1) , modify(0 , 0 , p , l , r , 0 , n , 1);
}
else printf("%lld\n" , solve(l - 1 , r , 0 , n , 1));
}
return 0;
}
【bzoj4785】[Zjoi2017]树状数组 线段树套线段树的更多相关文章
- 「ZJOI2017」树状数组(二维线段树)
「ZJOI2017」树状数组(二维线段树) 吉老师的题目真是难想... 代码中求的是 \(\sum_{i=l-1}^{r-1}a_i\),而实际求的是 \(\sum_{i=l}^{r}a_i\),所以 ...
- [BZOJ4785][ZJOI2017]树状数组(概率+二维线段树)
4785: [Zjoi2017]树状数组 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 297 Solved: 195[Submit][Status ...
- BZOJ4785 [Zjoi2017]树状数组 【二维线段树 + 标记永久化】
题目链接 BZOJ4785 题解 肝了一个下午QAQ没写过二维线段树还是很难受 首先题目中的树状数组实际维护的是后缀和,这一点凭分析或经验或手模观察可以得出 在\(\mod 2\)意义下,我们实际求出 ...
- P3688 [ZJOI2017] 树状数组 【二维线段树】
题目描述:这里有一个写挂的树状数组: 有两种共\(m\)个操作: 输入\(l,r\),在\([l,r]\)中随机选择一个整数\(x\)执行\(\text{Add}(x)\) 输入\(l,r\),询问执 ...
- 洛谷 P3688 - [ZJOI2017]树状数组(二维线段树+标记永久化)
题面传送门 首先学过树状数组的应该都知道,将树状数组方向写反等价于前缀和 \(\to\) 后缀和,因此题目中伪代码的区间求和实质上是 \(sum[l-1...n]-sum[r...n]=sum[l-1 ...
- LightOJ 1085(树状数组+离散化+DP,线段树)
All Possible Increasing Subsequences Time Limit:3000MS Memory Limit:65536KB 64bit IO Format: ...
- 敌兵布阵 HDU - 1166 (树状数组模板题,线段树模板题)
思路:就是树状数组的模板题,利用的就是单点更新和区间求和是树状数组的强项时间复杂度为m*log(n) 没想到自己以前把这道题当线段树的单点更新刷了. 树状数组: #include<iostrea ...
- 牛客网 暑期ACM多校训练营(第一场)J.Different Integers-区间两侧不同数字的个数-离线树状数组 or 可持久化线段树(主席树)
J.Different Integers 题意就是给你l,r,问你在区间两侧的[1,l]和[r,n]中,不同数的个数. 两种思路: 1.将数组长度扩大两倍,for(int i=n+1;i<=2* ...
- day 1 堆 hash 线段树 树状数组 冰茶姬 字典树 二叉查找树
来郑州的第二天,早上开始也没说什么就说了些注意安全,各种各样的注意安全... 冰茶姬: 原来再打食物链时看了一下冰茶姬,只注意了路径压缩,没想到还有什么按秩排序但确实快了不少... int find( ...
- HDU 1934 树状数组 也可以用线段树
http://acm.hdu.edu.cn/showproblem.php?pid=1394 或者是我自己挂的专题http://acm.hust.edu.cn/vjudge/contest/view. ...
随机推荐
- UWP开发:自动生成迷宫&自动寻路算法(1)
(1)前端篇 首先,我们创建一个新的Universal Windows Platform程序.这些小方块是通过GridView来罗列的,这样可以避免MainPaga.xaml的<Rectangl ...
- MovieReview—NINE LIVES(九条命)
Struggle & Family A successful middle-aged man in the movie became a cat by falling from ...
- [dp]uestc oj 邱老师看电影
定义状态dp[w][b]表示有w只白老鼠,b只黑老鼠时妹子赢的概率,分两种情况妹子抓到白老鼠概率为w/(w+b)和否则只有妹子抓黑老鼠和邱老师抓黑老鼠妹子才可能赢,再分两种情况:酱神抓白老鼠,状态 ...
- XPath语法规则及实例
XPath语法规则及实例 XPath语法规则 一.XPath术语: 1.节点:在XPath中,有七种类型的节点:元素.属性.文本.命名空间.处理指令.注释以及文档(根)节点. XML文档是被作为节点树 ...
- OpenCascade:Topo类型转换
OpenCascade:Topo类型转换 TopoDS_Edge newEdge; if (oldShape.ShapeType()==TopAbs_EDGE) newEdge=TopoDS::Edg ...
- Java替换手机号掩码
String tel = "18304072984"; // 括号表示组,被替换的部分$n表示第n组的内容 tel = tel.replaceAll("(\\d{3})\ ...
- C++利用偏移量对文件操作
对输入流操作:seekg()与tellg()对输出流操作:seekp()与tellp()下面以输入流函数为例介绍用法: seekg()是对输入文件定位,它有两个参数:第一个参数是偏移量,第二个参数是基 ...
- 【转】如何在VC下检测当前存在的串口及串口热拔插
当我们在用VS进行串口编程时,在打开串口前,经常想知道当前PC上存在多少个串口,哪些串口可用?哪些串口已经打开了,最好是在一个Combo Box中列表系统当前所有可用的串口以供选择,然而如何获取系统当 ...
- NOIP模拟赛 篮球比赛1
篮球比赛1(basketball1.*) Czhou为了提高机房里各种神牛的身体素质,决定在每次训练后举行篮球比赛.为了保持比赛公平,Czhou要将神牛们分成两队.首先神牛们赛前都要排成固定的队伍:然 ...
- 【构造题 贪心】cf1041E. Tree Reconstruction
比赛时候还是太慢了……要是能做快点就能上分了 Monocarp has drawn a tree (an undirected connected acyclic graph) and then ha ...