HihoCoder - 1636 Pangu and Stones(区间DP)
有n堆石子,每次你可以把相邻的最少L堆,最多R堆合并成一堆。
问把所有石子合并成一堆石子的最少花费是多少。
如果不能合并,输出0。
石子合并的变种问题。
用dp[l][r][k]表示将 l 到 r 之间的石子合并成 k 堆。
显然是k == 1 时,合并才是需要花费代价的。k >= 2时转移的时候不需要加代价。
这个我当时非常不理解。然后后来想想确实是这样的。因为k >= 2的状态必然是由 k == 1的时候转移过来的。
就是说将[l, r]分成k堆,必然要有几堆合并成一堆。
同理,合并区间长度限制的时候也只在k == 1的时候考虑就好了。
转移的时候分开按情况转移就好了。
记忆化搜索的形式老是TLE。我也不知道为啥。。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = + ;
const int INF = 0x3f3f3f3f;
int n, L, R;
int dp[maxn][maxn][maxn];
int sum[maxn], a[maxn]; //int DP(int l, int r, int k)
//{
// if (k > r-l+1) return INF;
// if (k == r-l+1) return dp[l][r][k] = 0;
// if (dp[l][r][k] != INF) return dp[l][r][k];
//
// if (k == 1)
// {
// for (int j = L; j <= R; j++)
// for (int i = l; i <= r-1; i++)
// dp[l][r][k] = min(dp[l][r][k], DP(l, i, j-1)+DP(i+1, r, 1)+sum[r]-sum[l-1]);
// }
// else
// for (int i = l; i <= r-1; i++)
// dp[l][r][k] = min(dp[l][r][k], DP(l, i, k-1)+DP(i+1, r, 1));
//
// return dp[l][r][k];
//} int main()
{
while(~scanf("%d%d%d", &n, &L, &R))
{
for (int i = ; i <= n; i++) scanf("%d", &a[i]), sum[i] = sum[i-]+a[i]; memset(dp, INF, sizeof(dp)); //printf("%d %d\n", dp[1][1][1], 0x3f3f3f3f); for (int i = ; i <= n; i++)
for (int j = i; j <= n; j++)
dp[i][j][j-i+] = ; for (int len = ; len <= n; len++)
for (int l = ; l+len- <= n; l++)
{
int r = l+len-;
for (int j = ; j <= len; j++)
for (int k = l; k <= r-; k++)
dp[l][r][j] = min(dp[l][r][j], dp[l][k][j-]+dp[k+][r][]); for (int j = L; j <= R; j++)
for (int k = l; k <= r-; k++)
dp[l][r][] = min(dp[l][r][], dp[l][k][j-]+dp[k+][r][]+sum[r]-sum[l-]);
} // int ans = DP(1, n, 1);
printf("%d\n", dp[][n][]==INF ? :dp[][n][]);
}
}
HihoCoder - 1636 Pangu and Stones(区间DP)的更多相关文章
- hihocoder 1636 : Pangu and Stones(区间dp)
Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the first livi ...
- hihoCoder 1636 Pangu and Stones
hihoCoder 1636 Pangu and Stones 思路:区间dp. 状态:dp[i][j][k]表示i到j区间合并成k堆石子所需的最小花费. 初始状态:dp[i][j][j-i+1]=0 ...
- [ICPC 北京 2017 J题]HihoCoder 1636 Pangu and Stones
#1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...
- icpc 2017北京 J题 Pangu and Stones 区间DP
#1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...
- 2017北京网络赛 J Pangu and Stones 区间DP(石子归并)
#1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...
- HihoCoder 1636 Pangu and Stones(区间DP)题解
题意:合并石子,每次只能合并l~r堆成1堆,代价是新石堆石子个数,问最后能不能合成1堆,不能输出0,能输出最小代价 思路:dp[l][r][t]表示把l到r的石堆合并成t需要的最小代价. 当t == ...
- 2017ICPC北京 J:Pangu and Stones
#1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...
- Pangu and Stones HihoCoder - 1636 区间DP
Pangu and Stones HihoCoder - 1636 题意 给你\(n\)堆石子,每次只能合成\(x\)堆石子\((x\in[L, R])\),问把所有石子合成一堆的最小花费. 思路 和 ...
- Pangu and Stones(HihoCoder-1636)(17北京OL)【区间DP】
题意:有n堆石头,盘古每次可以选择连续的x堆合并,所需时间为x堆石头的数量之和,x∈[l,r],现在要求,能否将石头合并成一堆,如果能,最短时间是多少. 思路:(参考了ACM算法日常)DP[i][j] ...
随机推荐
- 客户端设置WebService调用超时时间
刚接触WebService,对如何在客户端设置WebService调用超时时间查阅了一些资料,现总结如下: ============================================== ...
- Second Highest Salary
Write a SQL query to get the second highest salary from the Employee table. +----+--------+ | Id | S ...
- Employees Earning More Than Their Managers
The Employee table holds all employees including their managers. Every employee has an Id, and there ...
- Java调用webservice接口方法(SOAP message、xfire、axis)
webservice的 发布一般都是使用WSDL(web service descriptive language)文件的样式来发布的,在WSDL文件里面,包含这个webservice暴露在外面可供使 ...
- git 使用流程 命令
克隆远程分支到本地 git clone <https://github.com/cqzyl/methods.js.git> 进入master分支 git checkout master 以 ...
- Life here can be a dream come true!
Life here can be a dream come true!美梦迟早会成真的!
- RING3到RING0
当我在说跳转时,说的什么? CPU有很多指令,不是所有的指令都能够随时用,比如 ltr指令就不是随便什么时候能用,在保护模式下,如果你不安规则来执行指令,CPU就会抛出异常,比如你在INTEL手册上就 ...
- 快速获取雪碧图的图标样式插件 - gulp-css-spriter教程
如何快速把合成好的雪碧图,快速获取图标的样式呢? 用gulp-css-spriter很简单. 第一步: 在某个文件夹用shitf+鼠标右键 第二步: npm install gulp-css-spri ...
- sk-learning(2)
sk-learning 学习(2) sklearing 训练评估 针对kdd99数据集使用逻辑回归分类训练 然后进行评估 发觉分数有点高的离谱 取出10%数据494021条,并从中选择四分之一作为测试 ...
- git版本管理工具 标签(Tag) / 版本回退 / 分支的简单使用
a.标签 标签,可以使用这个功能来标记发布结点. 举个例子, 假如我们的项目版本目前是1.2版本, 上级要求这个版本要在半个月后再进行上传至Appstore, 并要求我们未来的半个月内,去写1.3版本 ...