省选算法学习-dp优化-四边形不等式
嗯......四边形不等式的确长得像个四边形【雾】
我们在dp中,经常见到这样一类状态以及转移方程:
设$dp\left[i\right]\left[j\right]$表示闭区间$\left[i,j\right]$中的最小值/最大值/和值
然后有这样的转移:
$dp\left[i\right]\left[j\right]=min\left(dp\left[i\right]\left[k-1\right]+dp\left[k\right]\left[j\right]+w\left(i,j\right)\right)$,其中$i<k\leqslant j$
$w\left(i,j\right)$表示闭区间$\left[i,j\right]$通过一定方法计算出来的费用
这个dp的复杂度显然是$O\left(n^3\right)$的,因为是平方的状态、线性的转移
但是有的时候这样的复杂度并不够切掉题目,这时我们需要一些优化
那么在这种情况下,四边形不等式就可以发挥它的价值了
首先,定义区间单调性如下:
当$p_1\leqslant p_2\leqslant p_3\leqslant p_4$时,若$w\left(p_2,p_3\right)\leqslant w\left(p_1,p_4\right)$,则称$w$满足区间单调性
同时定义四边形不等式如下:
当$p_1\leqslant p_2\leqslant p_3\leqslant p_4$时,若$w$满足如下式子,则称$w$满足四边形不等式:
$w\left(p_1,p_3\right)+w\left(p_2,p_4\right)\leqslant w\left(p_2,p_3\right)+w\left(p_1,p_4\right)$
接下来是一条非常重要的定理:
如果$w$函数满足四边形不等式,那么$dp$函数也满足四边形不等式!
也就是说:
当$p_1\leqslant p_2\leqslant p_3\leqslant p_4$时
$dp\left(p_1,p_3\right)+dp\left(p_2,p_4\right)\leqslant dp\left(p_2,p_3\right)+dp\left(p_1,p_4\right)$
而且还有另一个定理:
如果$dp$函数满足四边形不等式,那么表示$dp$函数取得最优值的点(也就是k)的那个函数$s$在每一行和每一列上单调
这个有点绕,换种说法
设$s\left[i\right]\left[j\right]$表示当$dp\left[i\right]\left[j\right]=min\left(dp\left[i\right]\left[k-1\right]+dp\left[k\right]\left[j\right]+w\left(i,j\right)\right)$的时候
$dp\left[i\right]\left[j\right]$取到最优(比如最大最小)值的时候,$k$的值,
$s\left[i\right]\left[j\right] \leqslant s\left[i\right]\left[j+1\right]$
那么$s$函数满足:
$s\left[i\right]\left[j\right] \leqslant s\left[i\right]\left[j+1\right]$
$s\left[i\right]\left[j\right] \leqslant s\left[i\right]\left[j+1\right]$,同时$s\left[i\right]\left[j\right] \leqslant s\left[i-1\right]\left[j\right]$
也就是说在枚举$k$值的时候,我们的闭区间变成了$\left[s\left[i\right]\left[j-1\right],s\left[i+1\right]\left[j\right]\right]$
因此只要先枚举区间长度,再枚举$i$求出$j$,就可以利用这个优化了
这个优化用完了以后,总复杂度可以从$O\left(n^3\right)$变成$O\left(n^2\right)$的
美滋滋
为了加深理解,我们来看一道例题:石子归并
这就是区间dp中四边形不等式的最基础的优化了
还有一道类似题目:Tree Construction
经典的四边形不等式优化,到这里就结束了(因为本来就是个比较窄的优化)
但是真的止于此地么?
我们看一道例题:HDU3480
可以说是比较显然的dp了,这里放上题解供参考:题解
看完题解会发现,这道题竟然也可以用四边形不等式优化!
为什么呢?
我们发现,这道题里面的$w$依旧满足区间单调性以及四边形不等式
证明一下(这里证明过程其实不需要掌握了)可以发现$dp$也满足四边形不等式
也就是说,我们只要找到$s$函数的依赖方式就能用四边形不等式优化了!
这道题中,实际上$s$依旧满足上述的行列单调递增,但是这里不能再使用闭区间$\left[s\left[i\right]\left[j-1\right],s\left[i+1\right]\left[j\right]\right]$了
因为方程式中只有一项$dp$,所以这两个$s$中的后面那一个和全方程无关,甚至可能还没有完全推出来
因此我们更改一下枚举方式,变成闭区间$\left[s\left[i-1\right]\left[j\right],s\left[i\right]\left[j+1\right]\right]$
这样就解决了问题
需要注意的是,枚举$len$再枚举$i$的方式现在不行了,我们需要枚举$i$再倒序枚举$j$,因为$\left[i,j\right]$依赖$\left[i,j+1\right]$
这道例题其实也可以用区间枚举法过掉(利用了另外的一个想法),但是不是所有这类”前j个元素放i个挡板“的dp都可以这么优化的,所以还是取上面讲的新方法比较好
省选算法学习-dp优化-四边形不等式的更多相关文章
- dp优化-四边形不等式(模板题:合并石子)
学习博客:https://blog.csdn.net/noiau/article/details/72514812 看了好久,这里整理一下证明 方程形式:dp(i,j)=min(dp(i,k)+dp( ...
- dp优化---四边形不等式与决策单调性
四边形不等式 定理1: 设w(x,y)为定义在整数集合上的二元函数,若存在任意整数a,b,c,d(a<=b<=c<=d),并且w(a,d)+w(b,c)>=w(a,c)+w(b ...
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
- 区间dp之四边形不等式优化详解及证明
看了那么久的四边形不等式优化的原理,今天终于要写一篇关于它的证明了. 在平时的做题中,我们会遇到这样的区间dp问题 它的状态转移方程形式一般为dp[i][j]=min(dp[i][k]+dp[k+1] ...
- HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化
HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...
- 学习笔记:四边形不等式优化 DP
定义 & 等价形式 四边形不等式是定义在整数集上的二元函数 \(w(x, y)\). 定义:对于任意 \(a \le b \le c \le d\),满足交叉小于等于包含(即 \(w(a, c ...
- 区间DP的四边形不等式优化
今天上课讲DP,所以我学习了四边形不等式优化(逃 首先我先写出满足四边形不等式优化的方程:
- HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...
- 『一维线性dp的四边形不等式优化』
四边形不等式 定义:设\(w(x,y)\)是定义在整数集合上的的二元函数,若对于定义域上的任意整数\(a,b,c,d\),在满足\(a\leq b\leq c \leq d\)时,都有\(w(a,d) ...
随机推荐
- CUDA:Supercomputing for the Masses (用于大量数据的超级计算)-第十节
原文链接 第十节:CUDPP, 强大的数据平行CUDA库Rob Farber 是西北太平洋国家实验室(Pacific Northwest National Laboratory)的高级科研人员.他在多 ...
- Windows8.1任务栏取消oneDrive图标
Windows8.1任务栏会有oneDrive图标,用不着,想取消,方法如下:
- Python小脚本程序
本文旨在搜集最简单最原子性的代码块,简单清晰容易阅读,然后由用户自己组合.Python代码排版请自行修改. 这里是索引目录: 1. 下载网站文件 2. 下载网站多个文件 1. 下载网站文件 impor ...
- 2018年ElasticSearch6.2.2教程ELK搭建日志采集分析系统(目录)
章节一 2018年 ELK课程计划和效果演示 1.课程安排和效果演示 简介:课程介绍和主要知识点说明,ES搜索接口演示,部署的ELK项目演示 章节二 elasticSearch 6.2版本基础讲解到 ...
- Android驱动开发读书笔记七
第七章 (一)创建设备文件 1.使用cdev_init函数初始化cdec 描述设备文件需要一个cdev结构体,代码如下: struct cdev{ struct kobject kobj; struc ...
- 分享一个漂亮按钮插件FancyButtons
一转眼,2018年的第10天就这样过去了.回看17年,曾经做了些啥都忘记了,就像每一天写日志时的样子(双手放在键盘上,怒着嘴,抬着头,望着天花板), 然后突然记得好像好久没有写随笔了(@_@).自从配 ...
- python读取xls文件
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/10/17 14:41 # @Author : Sa.Song # @Desc ...
- 748. Shortest Completing Word
https://leetcode.com/problems/shortest-completing-word/description/ class Solution { public: string ...
- 51nod_1154 回文串的划分
说实话..最开始看这题感觉一定好难...好高大上...我的马拉车还不熟....这种..但是本着做不出来也要至少看看的心态,吧个题看完了..然后简单的想了想,好像是个挺直观的动态规划,因为看到数据几乎就 ...
- Hive 分析函数lead、lag实例应用
Hive的分析函数又叫窗口函数,在oracle中就有这样的分析函数,主要用来做数据统计分析的. Lag和Lead分析函数可以在同一次查询中取出同一字段的前N行的数据(Lag)和后N行的数据(Lead) ...