并查集:按秩合并 $n$ 个点所得树高不超过 $\lfloor\log n \rfloor$
用 $h_n$ 表示按秩合并 $n$ 个点所得树的最大高度。
有 $h_1 = 0, h_2 = 1, h_3 = 1, h_4 = 2, h_5 = 2, \dots$
有如下地推:
\[ h_n = \max_{1\le i\le n-1} \max(h_i, h_{n-i}) + [h_i = h_{n-i} ]\]
因此有
$h_{n+1} \ge h_n$
$h_{2n} \ge h_n + 1$
可以证明 $h_n = \lfloor \log n\rfloor$
对 $n$ 用数学归纳法。
\begin{aligned}
h_n &= \max_{1\le i \le n/2} h_{n-i} + [h_i = h_{n-i}] \\
&= \max_{1\le i \le n/2} \lfloor \log (n-i) \rfloor + [\lfloor\log i \rfloor = \lfloor \log(n-i)\rfloor]
\end{aligned}
设 $n = 2^k + i$,其中 $0\le i < 2^k$
$ \lfloor\log i \rfloor = \lfloor \log(n-i)\rfloor \implies \lfloor\log i \rfloor = \lfloor \log(n-i)\rfloor = k-1$
故 $h_n = \max(k, h_{n-1}) = k = \lfloor \log n\rfloor$
并查集:按秩合并 $n$ 个点所得树高不超过 $\lfloor\log n \rfloor$的更多相关文章
- BZOJ4668: 冷战 [并查集 按秩合并]
BZOJ4668: 冷战 题意: 给定 n 个点的图.动态的往图中加边,并且询问某两个点最早什 么时候联通,强制在线. 还可以这样乱搞 并查集按秩合并的好处: 深度不会超过\(O(\log n)\) ...
- BZOJ4025 二分图 分治 并查集 二分图 带权并查集按秩合并
原文链接http://www.cnblogs.com/zhouzhendong/p/8683831.html 题目传送门 - BZOJ4025 题意 有$n$个点,有$m$条边.有$T$个时间段.其中 ...
- bzoj4668: 冷战 并查集按秩合并
题目链接 bzoj4668: 冷战 题解 按秩合并并查集,每次增长都是小集合倍数的两倍以上,层数不超过logn 查询路径最大值 LCT同解 代码 #include<bits/stdc++.h&g ...
- bzoj 4668 冷战 —— 并查集按秩合并
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4668 按秩合并维护并查集的树结构,然后暴力找路径上的最大边权即可. 代码如下: #inclu ...
- NOIP2013 D1T3 货车运输 倍增LCA OR 并查集按秩合并
思路: Kruskal求最大生成树+倍增LCA // by SiriusRen #include <cstdio> #include <cstring> #include &l ...
- HDU1865--More is better(统计并查集的秩(元素个数))
More is better Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 327680/102400 K (Java/Others) ...
- 【bzoj4668】冷战 并查集按秩合并+朴素LCA
题目描述 1946 年 3 月 5 日,英国前首相温斯顿·丘吉尔在美国富尔顿发表“铁幕演说”,正式拉开了冷战序幕. 美国和苏联同为世界上的“超级大国”,为了争夺世界霸权,两国及其盟国展开了数十年的斗争 ...
- Dash Speed【好题,分治,并查集按秩合并】
Dash Speed Online Judge:NOIP2016十联测,Claris#2 T3 Label:好题,分治,并查集按秩合并,LCA 题目描述 比特山是比特镇的飙车圣地.在比特山上一共有 n ...
- 【BZOJ-4668】冷战 并查集 + 按秩合并 + 乱搞
4668: 冷战 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 37 Solved: 24[Submit][Status][Discuss] Des ...
随机推荐
- 访问虚拟机中web服务的
经常发现假如我们想弄一点小玩意或跑一些小demo,总是要不断的在自己的工作本本上搭建不同的运行环境,久而久之,本本上充斥着各种软件,速度下降了,同时管理也非常的不方便.于是想到用虚拟机来搭建运行环境, ...
- CVE-2018-4878
0x00前言 该漏洞影响 Flash Player 版本28.0.0.137以及之前的所有版本 0x01 poc Poc 这里只列出关键代码 public function triggeruaf() ...
- Solaris&&QNX® Neutrino®&&OpenVMS&&FreeBSD&&AIX
原文链接Solaris (读作 /se'laris:/ 或者 /so'le:ris/ 或者 '梭拉瑞斯' )是Sun Microsystems研发的计算机 操作系统.它被认为是UNIX操作系统的衍生版 ...
- java基础——线程池
第2章 线程池 2.1 线程池概念 线程池,其实就是一个容纳多个线程的容器,其中的线程可以反复使用,省去了频繁创建线程对象的操作,无需反复创建线程而消耗过多资源. 我们详细的解释一下为什么要使用线程池 ...
- 使用POI解析Excel文件
Apache POI是Apache软件基金会的开放源码函式库,POI提供API给Java程序对Microsoft Office格式档案读和写的功能. 下载开发包: 解压上面的zip文件: 在项目中引入 ...
- 操作文件 -------JavaScrip
本文摘要:http://www.liaoxuefeng.com/ 在HTML表单中,可以上传文件的唯一控件就是<input type="file">. 注意:当一个表单 ...
- 对于新能源Can数据、电池BMS等字节和比特位的解析
1.对于1个字节(8个bit)以上的数据需要先进行倒序(因为高位在前 低位在后). CanID CanData 排序后的 字节数据 十进制 分辨率(0.005) 偏移量(40) 0x18FEC117 ...
- 第1 章初识Python
1.print()—输出 print()函数的基本用法如下: print(输出内容) 其中,输出内容可以是数字和字符串(使用引号括起来),此类内容将直接输出,也可以是包含运算符的表达式,此类内容将计算 ...
- ES6箭头函数基本用法
ES6箭头函数基本用法 ``` window.onload = function(){ alert(abc); } //箭头函数 window.onload = ()=>{ alert(&quo ...
- wireshark_1.6.2 使用笔记
表示ip1是否有访问ip2,进行抓包