4105.   Lines Counting


Time Limit: 2.0 Seconds   Memory Limit: 150000K
Total Runs: 152   Accepted Runs: 47


On the number axis, there are N lines. The two endpoints L and R of each line are integer. Give you M queries, each query contains two intervals: [L1,R1] and [L2,R2], can you count how many lines satisfy this property: L1≤L≤R1 and L2≤R≤R2?

Input

First line will be a positive integer N (1≤N≤100000) indicating the number of lines. Following the coordinates of the N lines' endpoints L and R will be given (1≤L≤R≤100000). Next will be a positive integer M (1≤M≤100000) indicating the number of queries. Following the four numbers L1,R1,L2 and R2 of the M queries will be given (1≤L1≤R1≤L2≤R2≤100000).

Output

For each query output the corresponding answer.

Sample Input

3
1 3
2 4
3 5
2
1 2 3 4
1 4 5 6

Sample Output

2
1

题目链接:TOJ 4105

题意就是在给你N条在X轴上的线段,求左端点在L1~R1且右端点在L2~R2的线段条数,其实这题跟NBUT上一道题很像,问你在区间L1~R1中,值在L2~R2中有几个数,只是这题在起点计数回退时可能多退几个位子,因为线段的起点和终点坐标可能有重复的,都不能算进去,因此要用while语句来操作。离线树状数组是什么个意思呢?就是要满足区间减法,这样的话就可以这样计数:在遇到询问左端点时时减去$[起点,询问区间左端点-1]$对该询问产生的影响值count1,在遇到询问右端点时加上$[起点,询问区间右端点]$对该询问的影响值count2,这样可以发现count1其实是count2的子集,一加一减一定会把count1抵消掉,只留下刚好符合询问区间的答案了。画了个图助于理解

代码:

#include <stdio.h>
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 100010;
struct Line
{
int l, r;
bool operator<(const Line &rhs)const
{
if (l != rhs.l)
return l < rhs.l;
return r < rhs.r;
}
};
struct query
{
int k, r1, r2, flag, id;
query(int _k = 0, int _r1 = 0, int _r2 = 0, int _flag = 0, int _id = 0): k(_k), r1(_r1), r2(_r2), flag(_flag), id(_id) {}
bool operator<(const query &rhs)const
{
return k < rhs.k;
}
};
Line line[N];
query Q[N << 1];
int T[N], ans[N]; void init()
{
CLR(T, 0);
CLR(ans, 0);
}
void add(int k, int v)
{
while (k < N)
{
T[k] += v;
k += (k & -k);
}
}
int getsum(int k)
{
int ret = 0;
while (k)
{
ret += T[k];
k -= (k & -k);
}
return ret;
}
int main(void)
{
int n, m, i;
while (~scanf("%d", &n))
{
init();
for (i = 0; i < n; ++i)
scanf("%d%d", &line[i].l, &line[i].r);
sort(line, line + n);
scanf("%d", &m);
int qcnt = 0;
for (i = 0; i < m; ++i)
{
int l1, r1, l2, r2;
scanf("%d%d%d%d", &l1, &r1, &l2, &r2);
Q[qcnt++] = query(l1, l2, r2, 0, i);
Q[qcnt++] = query(r1, l2, r2, 1, i);
}
sort(Q, Q + qcnt);
int x = 0;
for (i = 0; i < qcnt; ++i)
{
while (line[x].l <= Q[i].k && x < n)
add(line[x++].r, 1);
if (Q[i].flag)
ans[Q[i].id] += getsum(Q[i].r2) - getsum(Q[i].r1 - 1);
else
{
while (line[x - 1].l >= Q[i].k && x - 1 >= 0)
{
add(line[x - 1].r, -1);
--x;
}
ans[Q[i].id] -= getsum(Q[i].r2) - getsum(Q[i].r1 - 1);
while (line[x].l <= Q[i].k && x < n)
{
add(line[x].r, 1);
++x;
}
}
}
for (i = 0; i < m; ++i)
printf("%d\n", ans[i]);
}
return 0;
}

TOJ 4105 Lines Counting(离线树状数组)的更多相关文章

  1. TOJ 4105 Lines Counting (树状数组)

    题意:给定N条线段,每条线段的两个端点L和R都是整数.然后给出M个询问,每次询问给定两个区间[L1,R1]和[L2,R2],问有多少条线段满足:L1≤L≤R1 , L2≤R≤R2 ? 题解,采用离线做 ...

  2. 13年山东省赛 Boring Counting(离线树状数组or主席树+二分or划分树+二分)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud 2224: Boring Counting Time Limit: 3 Sec   ...

  3. SPOJ DQUERY - D-query (莫队算法|主席树|离线树状数组)

    DQUERY - D-query Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query ...

  4. Educational Codeforces Round 10 D. Nested Segments 离线树状数组 离散化

    D. Nested Segments 题目连接: http://www.codeforces.com/contest/652/problem/D Description You are given n ...

  5. HDU 4417 离线+树状数组

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  6. SPOJ 3267 D-query(离散化+在线主席树 | 离线树状数组)

    DQUERY - D-query #sorting #tree English Vietnamese Given a sequence of n numbers a1, a2, ..., an and ...

  7. 【HDOJ 5654】 xiaoxin and his watermelon candy(离线+树状数组)

    pid=5654">[HDOJ 5654] xiaoxin and his watermelon candy(离线+树状数组) xiaoxin and his watermelon c ...

  8. POJ 3416 Crossing --离线+树状数组

    题意: 给一些平面上的点,然后给一些查询(x,y),即以(x,y)为原点建立坐标系,一个人拿走第I,III象限的点,另一个人拿II,IV象限的,点不会在任何一个查询的坐标轴上,问每次两人的点数差为多少 ...

  9. HDU 2852 KiKi's K-Number(离线+树状数组)

    题目链接 省赛训练赛上一题,貌似不难啊.当初,没做出.离线+树状数组+二分. #include <cstdio> #include <cstring> #include < ...

随机推荐

  1. 动态规划专题(三)——数位DP

    前言 数位\(DP\) 真的是最恶心的\(DP\). 简介 看到那种给你两个数,让你求这两个数之间符合条件的数的个数,且这两个数非常大,这样的题目一般就是 数位\(DP\) 题. 数位\(DP\)一般 ...

  2. React后台管理系统-首页Home组件

    1.Home组件要显示用户总数.商品总数和订单总数,数据请求后端的 /manage/statistic/base_count.do接口,返回的是 this.state = {            u ...

  3. quartz调度

    http://www.cnblogs.com/lzrabbit/archive/2012/04/14/2446942.html

  4. nodejs 用户登录密码md5加密

    jade文件 div.login ul.inp-content  li span= '用户名:' input.ui-input1#input1(placeholder='请输入手机号')  li sp ...

  5. 高级字符驱动之堵塞与非堵塞IO

    /** *此实例涉及到线程的挂起与竞态,字符IO的堵塞与非堵塞 */ struct scull_pipe { wait_queue_head_t inp, outp; char *buffer, *e ...

  6. python 使用uuid 出现重复

    同时保存入数据库时候 ,使用  uuid.uuid1() 后出现 重复的 id , 现在  修改为 (uuid.uuid5(uuid.NAMESPACE_DNS, str(uuid.uuid1()) ...

  7. 项目17-超详细“零”基础kafka入门篇

    分类: Linux服务篇,Linux架构篇   1.认识kafka 1.1 kafka简介 Kafka 是一个分布式流媒体平台 kafka官网:http://kafka.apache.org/ (1) ...

  8. k8s的认证和service account简述

    k8s的认证: 与API server通信的客户端大致有两类:  1.集群客户端工具(kubectl.kubeadm.kubelet等)  2.集群内pod. 任何客户端访问k8s时的过程:  1.认 ...

  9. Linux时区修改

    Linux修改时区的正确方法 CentOS和Ubuntu的时区文件是/etc/localtime,但是在CentOS7以后localtime以及变成了一个链接文件 [root@centos7 ~]# ...

  10. 与SVN相关的程序的调试问题【转】

    解决eclipse中出现Resource is out of sync with the file system问题. 分析:有时候因为时间紧迫的原因,所以就没去管它,今天再次遇到它,实在看着不爽,所 ...